Friday, August 18, 2017

Thermodynamic Steam Traps

cutaway view thermodynamic steam trap
Cutaway view of disc type thermodynamic steam trap
Image courtesy of Spirax Sarco
Condensate return is an essential operation in any closed loop steam system. Steam that has lost its latent heat will collect in the piping system as hot liquid water (condensate). This liquid needs to be separated from the steam and returned to the boiler feedwater equipment without letting steam escape in the process.

Various items of steam utilization equipment and processes will result in condensate formation at different rates. The device that collects and discharges condensate to the return portion of the system is called a steam trap. There are numerous physical principals and technologies employed throughout the range of available steam trap types. Each has application limitations and strengths making them more or less suitable for a particular installation.

A thermodynamic steam trap relies on the energy provided by the condensate to move a disc which controls the flow of the condensate into the return system. The disc is the only moving part in the device. Condensate flows through a port to a chamber on the underside of the disc, lifting the disc and directing the flow to the return system or drain. Eventually, the fluid flowing into the chamber will reach a point where some of the condensate flashes to steam. A portion of this steam flows through a channel into the space above the disc, called the control chamber. The increase in pressure in the control chamber due to the steam influx pushes downward on the disc, seating it in a closed position. The trap, with the disc seated, remains in the closed position until the flash steam in the control chamber cools and condenses. Then the disc can be opened again by the inflow of condensate.

The thermodynamic disc trap is:

  • Easy to install
  • Compact
  • Resistant to damage from freezing
The single trap can cover a wide range of system pressure, and the simple construction translates into low initial cost. Properly matching any steam trap to its application is important. Share your condensate return and steam system challenges with specialists, combining your knowledge and experience with their product application expertise to develop effective solutions.

Tuesday, August 8, 2017

Orifice Plate - Primary Flow Element

orifice plate drawing
Orifice plates are simple in appearance, but exhibit
precision machining.
Image courtesy of Fabrotech Industries
An orifice plate, at its simplest, is a plate with a machined hole in it. Carefully control the size and shape of the hole, mount the plate in a fluid flow path, measure the difference in fluid pressure between the two sides of the plate, and you have a simple flow measurement setup. The primary flow element is the differential pressure across the orifice. It is the measurement from which flow rate is inferred. The differential pressure is proportional to the square of the flow rate.

An orifice plate is often mounted in a customized holder or flange union that allows removal and inspection of the plate. A holding device also facilitates replacement of a worn orifice plate or insertion of one with a different size orifice to accommodate a change in the process. While the device appears simple, much care is applied to the design and manufacture of orifice plates. The flow data obtained using an orifice plate and differential pressure depend upon well recognized characteristics of the machined opening, plate thickness, and more. With the pressure drop characteristics of the orifice fixed and known, the measuring precision for differential pressure becomes a determining factor in the accuracy of the flow measurement.

There are standards for the dimensional precision of orifice plates that address:
  • Circularity of the bore
  • Flatness
  • Parallelism of the faces
  • Edge sharpness
  • Surface condition
Orifice plates can be effectively "reshaped" by corrosion or by material deposits that may accumulate from the measured fluid. Any distortion of the plate surface or opening has the potential to induce measurable error. This being the case, flow measurement using an orifice plate is best applied with clean fluids.

Certain aspects of the mounting of the orifice plate may also have an impact on its adherence to the calibrated data for the device. Upstream and downstream pipe sections, concentric location of the orifice in the pipe, and location of the pressure measurement taps must be considered.

Properly done, an orifice plate and differential pressure flow measurement setup provides accurate and stable performance. Share your flow measurement challenges of all types with a specialist, combining your own process knowledge and experience with their product application expertise to develop an effective solution.

Thursday, August 3, 2017

Thermocompressor Breathes New Life into Low Pressure Waste Steam

steam thermocompressor
Steam Jet Thermocompressor from Spirax Sarco
mixes high pressure and low pressure steam supplies
Energy conservation and energy efficiency have contributed very large cost savings to many industrial and commercial operations over the past two decades. Projects with modest payback periods quickly begin their contributions directly to the bottom line of the balance sheet. In many instances, incorporating energy conservation and efficiency measures also improves the overall functioning of the consuming systems and equipment. In order to save energy, it is generally necessary to exercise better control over equipment or system operation by gathering more information about the current operating state. This additional information, gathered through measurement instrumentation, often finds use in other ways that improve productivity and performance.

Steam is utilized throughout many industries as a means of transferring heat, as well as a motive force. Much energy is consumed in the production of steam, so incorporating ways of recovering or utilizing the heat energy remaining in waste steam is a positive step in conservation.

A thermocompressor is a type of ejector that mixes high pressure steam with a lower pressure steam flow, creating a usable discharge steam source and conserving the latent heat remaining in the low pressure steam. The device is compact and simple, with no moving parts or special maintenance
thermocompressor labelled schematic
Schematic of basic thermocompressor, showing suction
inlet at the bottom and high pressure steam nozzle.
Image courtesy of Spirax Sarco
requirements. Two general varieties are available. The fixed nozzle style is intended for applications with minimal variation in the supply and condition of the suction steam (the low pressure steam). Some control is achievable through the regulation of the high pressure steam flow with an external control valve. A second style provides a means of regulating the cross sectional area through which the high pressure steam flows in the nozzle. This style is best applied when specific discharge flow or pressure is required, or there is significant variation in the inlet steam conditions.

Share all your steam system challenges with a steam system application specialist. Combine your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.

Thursday, July 27, 2017

Valve Positioners

industrial valve actuator with positioner
Valve positioner installed on pneumatic actuator
Courtesy Crane ChemPharma Energy
Valve positioners can provide process operators with a precise degree of valve position control across the valve movement range, as well as information about valve position. A relationship exists between applied pneumatic signal pressure and the position of the valve trim. The relationship between the two elements is dependent upon the valve actuator and the force of the return spring reacting to the signal pressure. In a perfect world, the spring and pneumatic forces would reach equilibrium and the valve would return to the same position in response to an applied signal pressure. There are other forces, however, which can act upon the mechanism, meaning the expected relationship between the original two elements of pressure and position may be offset. For example, the packing of the valve stem may result in friction, or the reactive force from a valve plug resulting from differential pressure across the area of the plug may be another.

While these elements may seem minor, and in some cases they are, process control is about reducing error and delivering a desired or planned output. Inclusion of a positioner in the valve assembly can ensure that the valve will be set in accordance with the controller commands.

Each positioner functions as a self-contained small scale control system. The first variable in the positioning process is the current valve position, read by a pickup device incorporated in the positioner. A signal which is sent to the positioner from the control system, indicating the desired degree of opening, is used as the setpoint. The controller section of the positioner compares the current valve position to the setpoint and generates a signal to the valve actuator as the output of the positioning process. The process controller delivers a signal to the valve, and then the positioner takes that signal and supplies air pressure required to accomplish the needed adjustment of the stem position. The job of the valve positioner is to provide compensatory force and to act as a counterbalance against any other variables which may impact valve stem position.

Magnetic sensors can be employed to determine the position of the valve stem. The magnetic sensor works by reading the position of a magnet attached to the stem of the valve. Other technologies can be employed, and all have differing ways of overcoming degrees of inaccuracy which may arise with wear, interference, and backlash. In addition to functioning as a positioner, control valve positioning devices can also function as volume boosters, meaning they can source and subsequently ventilate high air flow rates from sources other than their pneumatic input signal (setpoint). These devices can positively affect and correct positioning and velocity of the valve stem, resulting in faster performance than a valve actuator solely reliant on a transducer.

The inclusion of a positioner in a control valve assembly can provide extended performance and functionality that deliver predictable accurate valve and process operation. Share your valve automation requirements with a knowledgeable specialist and combine your process knowledge and experience with their product application expertise to develop an effective solution.

Friday, July 21, 2017

Pressure Motive Condensate Pumps

In a closed steam system, condensate must be returned to the feedwater side of the boiler. Moving this condensate effectively through the system is essential to maintaining design performance levels throughout the system. Condensate can be considered "spent steam", but still retains great value as preheated and treated feedwater for the boiler.

Three general methods are employed to transport condensate from where it is collected to where it is reused. If the facility layout permits, gravity can be the motive force to move the condensate back to the boiler. A second option is a mechanical pump, unsurprisingly called a condensate pump. The third common option is to employ system steam pressure to drive the condensate through the return piping and back to the boiler.

The concept of gravity return for the condensate is easy to envision....liquid flows downhill. Mechanical pumps, as well, are a well understood means of moving liquids. When the condensate collector reaches a certain fill level, the pump is energized and the liquid is forced through the return piping.

Using pressure as the motive force for condensate return involves coordinated operation of inlet, outlet, and vent openings to the condensate collection vessel. A float inside the collection vessel and a connected mechanism provide control of the valves at the vessel openings. In the video, you can see how the valve operating sequence provides for periods of condensate collection, then condensate discharge.

Share all of your steam system challenges with application specialists, combining your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.

Wednesday, July 19, 2017

Integrated Solution for Chilled Water Coil Control

integrated sensors, controller, control valve, actuator for HVAC
Monitrol includes controller, sensors, control valve, and
actuator in a single integrated package.
Image courtesy of Warren Controls
The final control element used for heating or cooling via a heat transfer fluid is going to be a control valve, most often one capable of modulating the fluid flow by precise valve positioning. This control activity requires sensors, the control valve, a controller, and an actuator.

Selecting, installing, and coordinating the operation of these components can be challenging and time consuming, especially when the components are sourced from varied manufacturers. Warren Controls delivers a consolidated solution with their Monitrol line of control valves intended for heat transfer control tasks and related operations. The Monitrol concept involves combining pre-engineered and matched controllers and actuators with flow control valves equipped with built-in sensors for pressure, temperature, or flow. Measurement and control is performed locally, with communications between the local and central controllers exchanging setpoint and performance information. The solution is compact and simplified, enabling easy selection, installation, and startup.

More details are provided in the document included below. There are numerous product variants to accommodate a wide array of field applications. Share your fluid control and heat transfer requirements and challenges with an application expert, combining your own facility and process knowledge with their product application expertise to develop an effective solution.

Thursday, July 6, 2017

Added Safety For Pneumatic Actuators

pneumatic actuator for industrial process control valve
XL Series Pneumatic Actuator
Courtesy Emerson - Hytork
Manufacturers of industrial process control gear keep the safety of their customers as a high priority item when designing products. There is much at stake in industrial operations, so every instance where the probability or impact of failure can be reduced is beneficial.

Pneumatic valve actuators utilize pressurized air or gas as the motive force to position a valve. A common version of these air powered actuators employs a rack and pinion gear set that converts the linear movement of air or spring driven pistons to rotational movement on the valve shaft. When one side of the piston is pressurized, the pinion bearing turns in one direction. When the air or gas from the pressurized side is vented, a spring (spring-return actuators) may be used to rotate the pinion gear in the opposite direction. A “double acting” actuator does not use springs, instead using the pneumatic supply on the opposing side of the piston to turn the pinion gear in the opposite direction.

From time to time, service or maintenance operations for the actuator may require opening of the pressure containing case. This is a potentially hazardous step and confirmation that the case is not pressurized when disassembly is undertaken is essential to a safe procedure. Many pneumatic actuators have cases assembled with numerous threaded fasteners. Hytork, an Emerson brand, employs a keyway and flexible stainless steel key to affix the end caps to their XL Series pneumatic actuators. This method provides a number of benefits, not the least of which is preventing the removal of the key and end cap if the case is pressurized.

Find out more about the XL Pneumatic Actuators in the illustrated piece provided below. Share your industrial fluid control challenges with industrial valve and automation specialists, combining your own process experience and knowledge with their product application expertise to develop effective solutions.