Friday, March 25, 2016

LOGIIC - Confederation of Government & Industry for Cybersecurity

oil refinery storage tanks
Oil and gas industry partners with US DHS for cybersecurity
In response to the challenges presented by malicious or mischievous cyber operatives, a number of organizations joined together to collaborate in the design, testing, and implementation of tools and techniques to protect critical industrial systems on a global scale. LOGIIC (Linking Oil and Gas Industry to Improve Cybersecurity), as its name implies, focuses on the oil and gas industry. We should all know, however, that a substantial portion of the automation and process control devices we regularly utilize throughout many industries today were originally developed in the oil and gas industry, where the operational scale and risk level are sufficiently high to justify the costs of developing new technology, methods, and equipment.

LOGIIC participants include the Automation Federation, which brings the resources of world class device and software manufacturers to bear on cybersecurity issues of the day. The Cyber Security Division of the Science & Technology Directorate in the US Department of Homeland Security is also involved. Currently, five major oil companies are members.
Since its inception, LOGIIC has successfully completed eight major projects, with plans for many more. Upon completion of selected projects, LOGIIC delivers public reports to help elevate best practices across the entire industry. Both the member companies and the government are putting funds towards these projects which benefits not only the private sector, but also the public interest. Companies are applying the results within their organizations, because it helps bridge the gap between information technology and the industrial-environment sides of the organization.
LOGIIC is an organization that conducts activities and disseminates information that can be useful throughout your own organization and that of your customers and suppliers in the industrial process control field. Below is a video highlighting the organization and its work.


Wednesday, March 16, 2016

Developing a Useful Alarm Strategy for Industrial Process Control

pharmaceutical sanitary process tanks batch operation
Pharmaceutical process operation
Industrial process control operators and designers have the capability to measure many aspects of machine operation and process performance. Determining the elements to measure, method of measurement, and how to handle and process the derived information can be challenging, but can also impact the security, performance, and safety of an operation. A plan for monitoring, reporting, and responding to abnormal process conditions, if properly developed and executed, can yield real benefits to a process operator. A protocol that is not well conceived may produce a negative operational impact by creating events that unnecessarily draw resources away from productive endeavor. That protocol, or plan, is often referred to as an alarm plan.

There are numerous forces that can influence the development and implementation of an alarm plan. Each operation must incorporate its own set of external regulatory requirements, internal procedures and policies into a complete alarm protocol. Distilling that macro description down to a workable set of procedures and response tasks is where the real work begins. There is, however, a basic framework that can help organize your thinking and focus on what is most important.

  • What parameters define the process or operation?
    Produce a schedule of every non-human element that is required to make the process function. This will require drilling down through every machine and material that is part of the operation. Expect the schedule to be extensive, even huge. If it is not, consider that your analysis may not be reaching deep enough. The goal here is to create an overview of what makes the process work and provide a tool for systematically studying the process elements and gleaning possible commonalities or relationships among them. Consider disregarding things that cannot be measured, since that prevents the derivation of data for evaluation. Review the completed schedule and decide which parameters shall be measured and evaluated for proper performance.
  • What level of measurement is needed for each monitored parameter?
    An assessment of the needed accuracy, frequency, and resolution for parameter measurement will help define the requirements for instrumentation or other devices used to monitor a particular item. The goal is to make sure the monitoring device is capable of detecting and delivering information of sufficient quality to make decisions.
  • Define the limits of acceptability for each monitored parameter.
    Until the endpoint of the process or operation, each step is likely dependent in some way on previous steps. The output of each step becomes the input of the next. While this, in many cases, may be an oversimplification, it is important to consider the relationships between the
     tasks and operations that comprise the process. Monitored parameters should relate to the successful completion of a process step, though not necessarily be a direct indicator of success. The maintenance of the parameter within certain bounds may be used as an indicator that a component of successful completion was properly attained. Defining limits of acceptability may involve an element of subjectivity and will likely be customized to accommodate the process. Each organization shall evaluate their operation and determine limits based upon intimate process knowledge and experience.
  • Define abnormal operation for each monitored parameter.
    Abnormal operation may not necessarily be any value not within what is considered acceptable. Consider abnormal to be the range of values that would be cause for notification of the operator, or even automated or human intervention. Note that the definition of unacceptable or abnormal operation might appropriately include filters or defined relationships with other parameters. An example of a simple filter is a time delay. If the measured variable exceeds the specified limit for 2 seconds, it make not be significant. If the threshold is exceeded for 2 minutes, it may be cause to take action. As with the limits of acceptability, developing the definition of abnormal operation for each parameter will be customized for each process.
  • Provide a defined response for every alarm occurrence.
    If it is important to monitor something, then it is likely important to do something when things get out of hand. Human executed alarm response should be concise and uncomplicated, to reduce the probability of error. Automated response should be designed in a manner that provides for functional testing on a regular basis. The scope of the response will be specific for each process, with the level of response depending upon factors determined by the process operators. Response can be as simple as annunciating the condition at a monitoring station, or as dire as shutting down part or all of the process operation.
  • Review every alarm occurrence
    Each alarm event should be logged and reviewed. Consider whether the event detection and response was adequate and beneficial. If the results were less than expected or desired, assess whether changes can be made to provide improved results in the future. The alarm plan is unlikely to be perfect in its first incarnation. Be prepared to reevaluate and make changes to improve performance.
The exercise of developing a comprehensive alarm plan will help to build understanding of process operation for all involved parties. This article is but a brief synopsis of the subject, intended to get the reader on the path of developing a useful alarm plan. Your alarm plan should an extension of process operation decision making, and have a goal of enhancing safety and reducing loss.   

Wednesday, March 9, 2016

Sleeved Plug Valves - Design Features and Variants

Industrial process control often involves the management of fluid flow, either by simple on-off flow control, throttling, or diversion of flow to alternate destinations. Valves of many differing designs and construction features provide distinct advantages for particular applications depending upon a variety of media characteristics, operational requirements, physical restrictions, and regulatory requirements.

Plug valves, so named for the generally tapered or parallel sided structure held in the flow path by the valve body, have wide application throughout the fluid control field. Their advantageous features include simple design, low maintenance, moderate size, minimal flow resistance when fully open, and quarter turn operation.
Cutaway view sleeved plug valve for industrial process use
Cutaway view of sleeved plug valve with design features labelled
Courtesy Fluoroseal

One subset of the plug valve family, the sleeved plug valve, has an additional advantage. It does not require lubrication. The metal plug is wedged within a sleeve, usually PTFE or a similar material, which provides a seal around the plug and a self lubricating surface to facilitate rotation of the plug within the body. One manufacturer, FluoroSeal, provides a broad offering of sleeved plug valves. The illustration (left) provides a cutaway view of one of Fluoroseal's valves of this type with primary design features labelled by the manufacturer as follows:
  1. Bidirectional in-line bubble-tight seal independent of line pressure
  2. Multiple external bubble-tight seals independent of line pressure
  3. Direction mechanical three-point adjustment independent of line pressure
  4. Independent travel stops
  5. Full encapsulation and retention of all leading edges of PFE sleeve and top seal components
  6. Full lip at port openings protects PTFE sleeve
  7. Contoured waterway ensures minimum flow turbulence characteristic
  8. No body cavities to entrap flow media
  9. Positive flow direction indication
  10. Drilled and tapped flange actuation mounting pads independent of cover and top sear assembly.

This versatile valve type is available in a number of variants suited to particular applications. Thes variants include:

  • Multiport configurations for flow diversion.
  • Caged plug version for use with a range of abrasive fluids
  • Double block and bleed design
  • Fire safe versions with additional sealing and venting to prevent leakage if the valve is overheated in a fire
  • Severe service variant to provide tight emission control and suitability for demanding applications with thermal cycling or a high operating rate
  • Special cleaning, testing, production methods, or other specialized tasks needed to assure safety or performance under very specific application conditions found in various industries.
An illustrated document with technical performance data for much of what is described above is included below. Browse the document for a more complete understanding of where sleeved plug valves can be applied and how they work. For more information, contact a valve specialist. Share your fluid control challenges with them and work toward a winning solution. The combination of your process expertise and their deep product application knowledge will yield good results.




Tuesday, March 8, 2016

Hardening Industrial Control Systems Against Cyberattack

Multiple industrial pumps
All industrial control systems and processes should
be evaluated for their vulnerability to cyberattack
Industrial control system owners, operators, and other stakeholders should be aware of their exposure to malicious intrusion and attack by individuals or organizations intent on inflicting physical damage, stealing information, or generally wreaking havoc throughout an industrial operation. The risk of intrusion, regardless of the size or type of facility, is real.

The National Cybersecurity and Communications Integration Center, part of the US Department of Homeland Security, ...
serves as a central location where a diverse set of partners involved in cybersecurity and communications protection coordinate and synchronize their efforts. NCCIC's partners include other government agencies, the private sector, and international entities. Working closely with its partners, NCCIC analyzes cybersecurity and communications information, shares timely and actionable information, and coordinates response, mitigation and recovery efforts. (from www.us-cert.gov/nccic)
The NCCIC has published a set of seven basic steps toward establishing a more secure industrial control system. I have included the publication below, and it is interesting and useful reading for all involved in industrial process control.

Having a fence around an industrial site, with a guarded entry gate, no longer provides the level of security needed for any industrial operation. Read the seven steps. Take other actions to build your knowledge and understanding of the risks and vulnerabilities. Cybersecurity is now another layer of design tenets and procedures that must be added to every control system. It will be a part of your company's best practices and success, now and in the future.

There are uncountable legacy controllers and communications devices throughout industrial America. All need to be reassessed for their vulnerability in the current and upcoming security environment. When reviewing your processes and equipment, do not hesitate to contact Mountain States Engineering for assistance in your evaluation of our products.