Wednesday, December 27, 2017

Mountain States Engineering and Controls 2017 Wrap Up

oilfield equipment
Oil and gas production and processing are but a few of
the markets in which MSEC operates.
As 2017 becomes a part of history, everyone here at Mountain States Engineering and Controls sends a message of thanks to all the people and organizations that supported the company's success throughout this year. It is our hope that our success was mirrored by your success, as well.

During the year, some changes were made to our product offering to support the goal of delivering top quality brands and problem solving products with long term value to our customers. The newly added Sterlco brand of electric condensate and boiler feed pumps, steam traps, and direct acting temperature control valves complements our other steam system products.

With an emphasis on our own continuing education and product application training, we intend to increase our performance throughout all areas of our operation in the coming year. We look forward to continuing and expanding our current business relationships, as well as forging new opportunities.

Happy New Year to all.


Thursday, December 21, 2017

Capsule Steam Traps

cutaway view capsule steam trap
Capsule type steam trap, cutaway view
Image courtesy Tunstall Corporation
Steam traps are an important part of a closed steam system, directing condensate on a path back to the boiler for reuse and venting non-condensing gases from the system. Of the several different types of steam traps utilized commercially, the thermostatic steam trap is but one. Thermostatic traps are often applied when the application can benefit from a utilization of some of the heat remaining in the condensate. This trap design will hold the condensate in place until it cools sufficiently below the saturation temperature of the steam.

Capsules utilized in thermostatic steam traps contain the controlling elements of the device. The parts are somewhat subject to wear through their movement, but more so from the corrosive effects of system fluid, impurities, and mechanical shock from water hammer. Tunstall Corporation specializes in the manufacture of replacement capsules for thermostatic steam traps that provide better service and extended warranty duration. Their sealed units are fabricated of stainless steel and welded to seal out deterioration due to exposure to steam and condensate. Drop in replacement capsules are available for conceivably every trap manufactured in the previous few decades.

Share your steam system requirements and challenges with application specialists, leveraging your own knowledge and experience with their product application expertise to develop an effective solution.

Wednesday, December 13, 2017

Process Tuning

sliding gate industrial process control valve
This sliding gate industrial control valve could operate
under the command of a tuned process control loop.
Image courtesy Schubert & Salzer
Controller tuning is a process whereby a controlling device in a process has a response characterized to the needs of maintaining a process condition within certain limits under a range of varying disturbances to the process. Established guidelines for automation standards exist so that every process control operator can experience the same standard of safety and maintenance in a way universally understandable. The International Society of Automation (ISA) promotes different tuning standards based on the particulars of the control process, such as temperature or liquid level control.

Liquid-level control loops are usually considered non-self-regulating processes. They require external moderation to remain uniform and for errors to either be mitigated or corrected. General rules which exist for adjusting and tuning loops for self-regulating process, such as temperature control, are often inapplicable to liquid level loops, making liquid level control loops somewhat unique in their tuning.

In order to address the counter intuitive nature of these process loops, start with a model of the loop’s ideal functionality. This can serve as a reference. After doing so, incorporate potential variables into the ideal loop and evaluate their impact on the model process. Checking equipment, then modeling the process dynamics, allows engineers to observe the manner in which the process reacts in relation to the target or goal performance.

Whereas other loops can be tuned via trial and error, liquid-level control loops should not be due to the nature of their reactions to controller input being different than that of other processes. Instead, the parameters for the control loop need to be carefully engineered, rather than specifically tuned. Liquid level loops are integrating processes, rather than self-regulating. A self-regulating process will, with no disturbances to the variables, reach an equilibrium at which the process value remains constant. Consider a non-self-regulating liquid level control loop where the fill valve is open. No equilibrium point will be achieved, just overflow. The distinction between the two types is key to understanding why tuning liquid level loops is a different process than self-regulating control loops.

Temperature and thermal loops, depending upon the process dynamics, present varying degrees of tuning challenge. PID temperature controllers are employed to adjust the heat input to a process to affect a change in, or maintenance of, a process temperature setpoint. Without proper tuning, the controller output and the resulting process performance can oscillate or be slow to respond, with a negative impact on process performance or yield. Many PID controllers have an auto-tune feature, some of which are more effective than others. The best results achievable by PID controller tuning are accomplished by defining a setpoint prior to the auto-tune process and starting the tuning procedure from a stable process condition. Tuning the controller in the same process environment in which it will operate can also be very helpful.

Share your process measurement and control challenges with experienced application specialists, combining your own knowledge and experience with their product application expertise to develop effective solutions.

Thursday, December 7, 2017

Compressed Air as a Motive Force

coalescing filters for compressed air
Coalescing filters are common components of a compressed
air system.
Image courtesy SPX Pneumatic Products
Compressed air is utilized throughout every industry and many commercial settings. While primarily used as a motive force, compressed air serves as a utility in many applications in the oil and gas, chemical and petrochemical, nuclear power, food, pharmaceutical, and automotive industries. The presence and use of compressed air across multiple industries is so essential, its importance is comparable to utilities like electricity, gas, and water.

In the control of fluid processes, compresses air facilitates operation and control of valves and other instruments. Dry air, with a sufficiently depressed dew point, can ensure process materials and equipment stay free of moisture and its associated impediments to smooth operation. The use of compressed air as either a motive force or a utility imparts minimum requirements on its quality or constituents. Confounding substances, such as particulates, water, and oil, may be entrained or contained in a compressed air stream. Various methods of filtration and moisture removal may be necessary to condition or process the compressed air in order to deliver consistent quality.

The advantages of using compressed air as a motive force in industrial settings are more numerous than appropriate for listing here, but consider that tools driven by compressed air can be more compact, lower weight and less prone to overheating than electrically driven tools. Air driven devices tend to have reduced parts count and require little maintenance, whether tools, valve actuators, pistons, or other machines. Compressed air driven devices can be fashioned to amplify the power of an electrical signal, enabling a simpler means of powering some types of loads. Compressed air, by its nature, presents no electrical hazards to the workplace.

Whenever air driven devices are utilized, attention must be given to compressed air production. The pressure, maximum flow rate demand, and compressed air quality must meet the process or operation requirements. Share your compressed air system challenges with specialists, leveraging your own knowledge and experience with their product application expertise to develop effective solutions.