Showing posts with label Spirax Sarco. Show all posts
Showing posts with label Spirax Sarco. Show all posts

Tuesday, May 22, 2018

Design of Fluid Systems - Steam Utilization Handbook

Steam Utilization
Recognizing the on-going need for education as it relates to the fundamentals of steam including the most efficient use of its heat content, Spirax Sarco has developed the following handbook on steam ulilization.

This handbook represents over 100 years of steam experience in the proper selection, sizing and application of steam traps, pressure and temperature controls, and condensate recovery systems in major industrial plants throughout the world.

You can review the embedded document below, or you can download your own copy of the "Design of Fluid Systems - Steam Utilization Handbook" here.

Tuesday, March 27, 2018

Steam - Desuperheating and Attemperation

electric power generation plant
Steam is a motive force used to generate electric power
Industrial operations of many types utilize steam as a heat or power source, plus there is electric power generation. Steam is an important sort of "back office" component of the lives of many dwellers in modern economies.
What is steam?
Sorry, but we need to get everybody on the same page here. Steam is water vapor, produced by the application of heat to water. In order for steam to do work and serve as a useful energy source, it must be under pressure. There can be applications that employ steam at atmospheric pressure, but most are pressurized.

The heat goes on, the water boils, steam is produced and flows through the piping system to where it is used. Sounds simple, sounds easy. It is not. There are intricacies of designing and operating a steam system that determine its raw performance, as well as how efficiently it uses the fuel or other heat source employed to boil water. Steam utilization equipment is also carefully designed to provide its rated performance when supplied with steam of a given condition.

Steam at any given pressure has a saturation temperature, the temperature at which the vaporized water content of the steam is at its maximum level. Heat steam above its saturation temperature and you have superheated steam. Cool it below the saturation temperature and vapor will start to condense. The way in which the steam is to be used determines whether, and how much, superheat is desirable or necessary.
  • Turbine operations benefit from properly superheated steam because it avoids exposure of the turbine to liquid water droplets, generally a source of surface erosion and other accelerated wear.
  • Heat exchanger performance is based upon certain inlet conditions, one of which is the degree of superheat.
  • Maintaining sufficient superheat throughout a continuously operating steam system minimizes the need for, and size of, a condensate return system
Processes are designed to deliver a predictable output when provided with known inputs. In the case of steam, the temperature of the steam may be an input requiring control. This brings us to attemperation, which in the case of steam most often refers to lowering the temperature of a steam supply. Attemperation and desuperheating (reducing the degree of superheat) are accomplished in a similar fashion, but with differing objectives. Attemperation involves simply controlling the temperature of the steam, without any direct regard for the level of superheat. Desuperheating, as a control operation, is not directly related to the temperature of the steam, just the degree by which it exceeds the saturation temperature at the current condition. For attemperation, steam temperature measurement is all that is needed. For desuperheating, pressure and temperature measurements are needed. Decreasing the temperature of superheated steam will naturally reduce the amount of superheat.

Some process requirements may focus on temperature of the delivered steam, without regard to superheat level. Others will rely on a specified level of superheat. The application scenarios are vast, with equipment available to accomplish whatever is needed.

Either operation can be accomplished with a specialized heat exchanger or other device that extracts heat from the steam. Another option relies on the addition of atomized water to the flowing steam to manage temperature or superheat level. Share your steam system challenges with steam system experts, leveraging your own knowledge and experience with their product application expertise to develop an effective solution.

Sunday, February 18, 2018

Getting Benefit From Waste Steam With a Thermocompressor

steam thermocompressor
Steam thermocompressor enables use of waste steam
in higher pressure applications.
Image courtesy Spirax Sarco
Steam, with its utilization as a means of transferring heat, as well as a motive force, is found in use throughout many industries. The production of steam is a significant cost of operation for any business where it is employed. Steam, after performing its intended function, still contains a comparatively large amount of heat, so methods of recovering or utilizing that heat energy remaining in waste steam is a positive step in conservation.

Energy conservation and energy efficiency have contributed very large cost savings to many industrial and commercial operations over the past two decades. Projects with modest payback periods quickly contribute to the bottom line of the operation's balance sheet. It is not uncommon for  energy conservation and efficiency measures contribute to improvement in the overall functioning of the steam utilization equipment or systems. In order to save energy, it is generally necessary to exercise better control over equipment or system operation by gathering more information about the current operating state. This additional information, gathered through measurement instrumentation, often finds use in several ways that improve productivity and performance.

A thermocompressor is a type of ejector that mixes high pressure steam with a lower pressure steam flow, creating a usable discharge steam source and conserving, through reuse, the remaining heat content of the otherwise wasted low pressure steam. The device is compact and simple, with no moving parts or special maintenance requirements. Two general varieties are available. A fixed nozzle style is intended for applications with minimal variation in the supply and condition of the suction steam (the low pressure steam). Some control is achievable through the regulation of the high pressure steam flow with an external control valve. A second style provides a means of regulating the cross sectional area through which the high pressure steam flows in the nozzle. This style is best applied when specific discharge flow or pressure is required, or there is significant variation in the inlet steam conditions.

Share your steam system challenges with a steam system application specialist. Leverage your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.


Wednesday, January 10, 2018

Steam Trap For Heavily Contaminated Steam

cast iron float steam trap
The Float Trap series is available in carbon or stainless steel.
Image courtesy Spirax Sarco
Industrial process gear and equipment manufacturers are always tweaking designs, adding features, and creating new product variants in response to the challenges presented by the immeasurably broad range of application and operation scenarios for their products. Spirax Sarco is a globally recognized leader in the design and manufacture of steam system specialties, and has created a rugged steam trap to accommodate some tough challenges.

The company's FTC23 and FTS23 Float Trap products are ball float steam traps suitable for use with saturated and superheated steam. The units can be utilized on process equipment and for drainage of temperature controlled systems. These traps are specifically targeted at applications involving steam that may be carrying solids or incondensable gasses. Solids, if not purged from the system, can accumulate and foul the internal trap mechanism, leading to failure.

The company indicates that the main design feature is a self-cleaning float closing mechanism which maintains safe operation even in the presence of severe contamination. The positioning of the valve and seat also promote the discharge of the condensate, along with entrained contaminants. There is even a manual lever on the exterior of the trap that allows an operator to force the full opening of the valve, regardless of whether condensate is present. This operation facilitates fast removal of contaminants and maintains optimum performance.

The two models differ in their construction materials, with one having a carbon steel body, the other a stainless steel body. Internals are stainless steel on both units.

Share your challenges with the steam system specialists, leveraging your own knowledge and experience with their product application expertise.


Friday, January 5, 2018

Piston Isolation Valves For Steam and Condensate

carbon steel or stainless steel piston valve for steam or condensate
Simple and reliable piston isolation valve is well suited
for steam and condensate applications.
Image courtesy Spirax Sarco
Piston valves are serviceable and reliable valves that are well applied to isolation use in steam and condensate systems. Recently, Spirax Sarco, globally recognized manfacturer of steam system componentry, introduced their PV4 and PV6 lines of piston isolation valves targeted at steam and condensate applications.

The new valves are available with carbon steel or stainless steel bodies, with the internals of both being stainless steel. Screwed, socket weld and butt weld connections are available in 1/2" through 2" sizes. The operation is unidirectional, so installation must have the system flow according to the arrow on the body. The only other installation restriction is that the handwheel should be above the valve body.

Accommodated pressure and temperature ranges for the PV4 and PV6 will be suitable for a broad range of steam and condensate applications. Share your steam system challenges of all types with application specialists. Leverage your own knowledge and experience with their product application expertise to develop effective solutions.


Friday, August 18, 2017

Thermodynamic Steam Traps

cutaway view thermodynamic steam trap
Cutaway view of disc type thermodynamic steam trap
Image courtesy of Spirax Sarco
Condensate return is an essential operation in any closed loop steam system. Steam that has lost its latent heat will collect in the piping system as hot liquid water (condensate). This liquid needs to be separated from the steam and returned to the boiler feedwater equipment without letting steam escape in the process.

Various items of steam utilization equipment and processes will result in condensate formation at different rates. The device that collects and discharges condensate to the return portion of the system is called a steam trap. There are numerous physical principals and technologies employed throughout the range of available steam trap types. Each has application limitations and strengths making them more or less suitable for a particular installation.

A thermodynamic steam trap relies on the energy provided by the condensate to move a disc which controls the flow of the condensate into the return system. The disc is the only moving part in the device. Condensate flows through a port to a chamber on the underside of the disc, lifting the disc and directing the flow to the return system or drain. Eventually, the fluid flowing into the chamber will reach a point where some of the condensate flashes to steam. A portion of this steam flows through a channel into the space above the disc, called the control chamber. The increase in pressure in the control chamber due to the steam influx pushes downward on the disc, seating it in a closed position. The trap, with the disc seated, remains in the closed position until the flash steam in the control chamber cools and condenses. Then the disc can be opened again by the inflow of condensate.

The thermodynamic disc trap is:

  • Easy to install
  • Compact
  • Resistant to damage from freezing
The single trap can cover a wide range of system pressure, and the simple construction translates into low initial cost. Properly matching any steam trap to its application is important. Share your condensate return and steam system challenges with specialists, combining your knowledge and experience with their product application expertise to develop effective solutions.



Thursday, August 3, 2017

Thermocompressor Breathes New Life into Low Pressure Waste Steam

steam thermocompressor
Steam Jet Thermocompressor from Spirax Sarco
mixes high pressure and low pressure steam supplies
Energy conservation and energy efficiency have contributed very large cost savings to many industrial and commercial operations over the past two decades. Projects with modest payback periods quickly begin their contributions directly to the bottom line of the balance sheet. In many instances, incorporating energy conservation and efficiency measures also improves the overall functioning of the consuming systems and equipment. In order to save energy, it is generally necessary to exercise better control over equipment or system operation by gathering more information about the current operating state. This additional information, gathered through measurement instrumentation, often finds use in other ways that improve productivity and performance.

Steam is utilized throughout many industries as a means of transferring heat, as well as a motive force. Much energy is consumed in the production of steam, so incorporating ways of recovering or utilizing the heat energy remaining in waste steam is a positive step in conservation.

A thermocompressor is a type of ejector that mixes high pressure steam with a lower pressure steam flow, creating a usable discharge steam source and conserving the latent heat remaining in the low pressure steam. The device is compact and simple, with no moving parts or special maintenance
thermocompressor labelled schematic
Schematic of basic thermocompressor, showing suction
inlet at the bottom and high pressure steam nozzle.
Image courtesy of Spirax Sarco
requirements. Two general varieties are available. The fixed nozzle style is intended for applications with minimal variation in the supply and condition of the suction steam (the low pressure steam). Some control is achievable through the regulation of the high pressure steam flow with an external control valve. A second style provides a means of regulating the cross sectional area through which the high pressure steam flows in the nozzle. This style is best applied when specific discharge flow or pressure is required, or there is significant variation in the inlet steam conditions.

Share all your steam system challenges with a steam system application specialist. Combine your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.


Tuesday, May 2, 2017

Steam Traps

high pressure float type steam trap cutaway view
Cutaway view of high pressure float type steam trap
Courtesy Spirax Sarco
Steam is widely used throughout industrial, commercial, and institutional facilities and a means of transferring heat energy, as well as a wide array of other applications. Steam generation cost is a substantial line item on almost any balance sheet, so deriving the most efficient level of operation from a steam system pays tangible dividends.

Utilizing the heat content of steam, in a closed system, results in the production of condensate. Condensate is hot liquid water which can be returned to the boiler and re-vaporized. Managing the separation of the liquid condensate from the process steam and sending it to the lower pressure condensate return line is the function of a steam trap. A steam trap filters out condensate (condensed steam) via an automatic valve. The trap also removes air without letting process steam escape. By filtering out the condensate and not the steam, steam waste is minimized. Steam traps generally are self-contained automatic devices. Since steam based heating processes generally rely on latent heat transfer for rapid and efficient operation, it is necessary to continually collect and transfer condensate from the steam containing portion of the system. The condensate will reduce heat exchanger performance if allowed to accumulate.

Historically, there have been three main types of steam traps: mechanical traps, thermostatic traps, and thermodynamic traps. Most commonly used mechanisms rely on differences in temperature, specific gravity, and pressure. The mechanical trap was originally developed as a bucket trap, which was a rather large trap where a bucket floated up or down to open and close a valve. Bucket traps with a lever, which face downward – also known as ‘closed bucket’ traps – are still used today as a float type trap. Processes requiring large capacities for discharge still currently use the bucket type or float type trap, with long services lives. In the modern version of a free float trap, the condensate is continuously discharged while the valve opening is constantly controlled by the amount of buoyant force acting upon a tightly sealed float.

Thermostatic traps are a smaller, more compact design. Using a temperature sensing mechanism, and operable by mechanisms like bellows or bimetal rings, these thermostatic traps have a slower response. Processes relying on rapid condensate discharge most likely will not use thermostatic traps. An example of a trap used in the process industry today is a bimetal temperature control trap. The trap includes steam tracers and will discharge when a certain condensate temperature is reached.

The core limitation of thermostatic steam traps – the slow response time – has been addressed via the development of the thermodynamic steam trap. The thermodynamic trap operates on the expansion and contraction of an encapsulated liquid. This version of steam trap allows for the smallest amount of condensate accumulation. Early models resulted in unacceptable levels of steam loss. As a result, the commonly used disc type trap was developed for mainstream use. The disc type is compact, versatile, and relatively affordable in terms of installation costs. In the modern disc type, pressure fluctuations in the chamber above the valve result in the valve’s opening and closing. Though in use for many years, development and refinement continues on steam traps, bringing ever better performance to this ubiquitous steam specialty.

Share your challenges with a steam system specialist, combining your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.

Friday, March 17, 2017

Ergonomic Electro-Pneumatic Valve Positioner

Spirax Sarco, global leader in steam system control products, has released a new valve positioner that ranks high on the user friendly scale. The EP500 is an electro-pneumatic positioner that features a cast aluminum enclosure and a host of features that facilitate a rapid and simple setup or calibration procedure.

See how easily setup is accomplished, and get a close look at the new valve positioner, in the video provided below. Reach out to a steam system and valve specialist for more information, and share your control valve and steam system challenges. The combination of your own process knowledge and experience will combine with the expertise of a product application specialist to develop effective solutions.

Monday, January 2, 2017

Steam Trap Maintenance Made Easier With Pipeline Connector

steam trap isolation valve set
PC4000 Pipeline Connector
Courtesy Spirax Sarco
Steam is a common source of heat or power throughout industrial and commercial installations. Most steam systems operate as a closed system, with return of condensate to maximize energy efficiency and gain other operational benefits. Steam traps are the workhorse of many condensate return systems, routing condensate back to the boiler and non-condensible gases out of the system, all without a major loss of steam.

Steam traps are points of high maintenance in the steam system. They are also an integral part of the system, meaning they are under pressure. Steam trap maintenance requires isolating the trap from the system, venting the pressure within the isolated section, and removing liquid that may be contained in the trap.

Spirax Sarco, globally recognized leader in steam system componentry and controls, provides a single unit solution for steam trap maintenance isolation. The PC4000 pipeline connector series (in the company's own words)...
"...are a complete 'Trap valve station solution' developed for use with two bolt universal swivel connector steam traps.
As the unit has been designed with two integral piston stop valves, it is possible to isolate both upstream and downstream of the universal trap connection and through the use of the fitted depressurization valves, possible to depressurize, test and drain the pipeline. The trap depressurization port also incorporates a maintainable 40 mesh stainless steel strainer screen to provide trap protection from system dirt and debris, which can be cleared through the use of the line pressure."
 A detailed data sheet is provided below for further review. Share your steam system challenges of all types with specialists, combining your facility and process knowledge with their product application expertise to develop effective solutions.


Tuesday, December 13, 2016

Specially Designed Heat Exchangers Deliver Hot Water on Demand

plate heat exchanger steam to water Spirax Sarco
Plate heat exchanger for producing hot water from steam
Courtesy Spirax Sarco
Hot water is readily available on demand from your steam system with the application of a properly configured heat exchanger. The installation of a well designed steam to water heat exchanger can deliver large or small demand volumes of hot water efficiently and with little need for maintenance or attention.

Spirax Sarco, globally recognized leader in steam and condensate system solutions, provides complete pre-engineered heat exchanger packages for adding hot water production to a steam system. The company combines their renowned control components with a plate or shell and tube heat exchanger, all performance matched to provide optimum performance in a single package.

  • Compact design requires minimum footprint.
  • Control valves specifically designed for steam service deliver efficient operation and long service life with minimal maintenance.
  • Condensate removal system eliminates backup of condensate in steam space for maximized efficiency.
  • A single source for the entire unit assures a coordinated installation.
  • Low maintenance requirements.
  • All piping connections on one side for easy installation.
  • Hot water on demand reduces or eliminates the need to store hot water.
There is more to learn. Additional detail is provided in the document included below. Reach out to a steam system specialist with your questions, requirements, and steam system challenges. Combine your facility and process knowledge with their product application expertise to develop effective solutions.

Tuesday, November 8, 2016

Spiral-Trol Valve Disassembly Video

globe valves control valves pneumatic actuator
Globe control valves with pneumatic actuators
Spirax-Sarco
Spirax-Sarco is a globally recognized manufacturer of valves, traps, and a host of other steam system specialties. Their Spira-Trol line of globe valves can be employed throughout a steam of other process fluid system to provide accurate flow regulation. The valves are available with several options of electric or pneumatic actuators, as well as positioning controllers.

The video included below provides a demonstration of the simplicity involved in disassembling the valve in-line for regular maintenance or inspection. The video is short, as is the length of time needed to access the valve internals. These valves are designed for easy maintenance.

Share your fluid process and steam control challenges with application experts. The combination of your process knowledge and their product application expertise will deliver effective solutions.

Tuesday, November 1, 2016

New High Pressure Float Type Steam Trap

steam trap high pressure float type
Model FTC62 High Pressure Steam Trap
Courtesy Spriax Sarco
Steam is utilized by industrial operations as a source of heat and power. Commercial and institutional facilities widely employ steam as a heating source. The overall cost of operating a steam system is generally significant, regardless of the size of the organization. Designing a system to deliver efficient performance and maintaining that performance throughout many years of expected operation requires continuous monitoring and attention.

One facet of efficient operation is to remove condensate from the steam system and return it to the boiler. This operation is the primary function of a steam trap. Additionally, a steam trap will also remove non-condensible vapor from the system. Liquid water and non-condensible vapor both will undermine efficiency in a common steam system.

There are many versions of steam traps available, and it is important to match the capacity and performance range of the trap to the steam system. Spirax-Sarco, globally recognized steam system specialties manufacturer, has added  a new steam trap model series to their already extensive offering.

The FT62 Series, which is available with a carbon steel (FTC62) or stainless steel (FTS62) body, has stainless steel internal components. It is intended for application on light and heavy condensate loads on steam systems with differential pressure up to 900 psig (62 bar).  The unit includes an integral air vent and an easily maintainable in-line strainer.

More information is provided below, with good illustration of the exterior and interior setup of the steam trap. Share your steam system requirements and challenges with experienced application specialists, combining your facility and process knowledge with their product application expertise to develop effective solutions.


Tuesday, October 18, 2016

Knowledge Base for Steam System Components

steam system schematic showing area of steam utilization
Steam utilization schematic showing array of products (blue)
Spirax Sarco
Steam, ubiquitous source of industrial power and commercial heat, ranks as a substantial continuing expense item for any organization where it is utilized or produced. Designing, installing, and managing steam system operation effectively can generate immense cost savings over less rigorous approaches.

An effective method of good decision making involves tapping into the experience and expertise of those that have gone before, accomplished what you plan to attempt. For steam systems, Spirax Sarco is a premiere source of information, knowledge, and expertise. The company has been deeply involved in the production and utilization of steam for many years, designing and manufacturing components utilized throughout the entire process.
steam system schematic showing components utilized in production of steam
Steam production schematic showing array of products (blue)
Spirax Sarco
In the steam generation section of an operation, the company provides a extensive array of interrelated products.
  • Blowdown Heat Recovery Systems
  • Blowdown Vessel
  • Boiler Feedtank Systems
  • Boiler Level Controls and Alarms
  • Bottom Blowdown Valves and Systems
  • Condensate Contamination Detection
  • Electrically Actuated Two Port Control Valves
  • Pipeline Strainers
  • Sample Coolers
  • Safety Valves
  • Spirax Range of Flowmeters
  • Steam Trap Performance Monitoring
  • Tank Level Controls
  • TDS Control
  • Vacuum Breakers
Throughout the balance of the steam system, the list of components available from the company expands even more, illustrating Spirax Sarco's depth of knowledge about steam system components and how they function together to deliver efficient and safe steam system operation.

Reach out to experts with your steam system challenges, combining your facility and process knowledge with their product application expertise to develop effective solutions.

Tuesday, September 27, 2016

Multivariable Flow Measurement For Liquids, Gases, and Steam

Insertion flow meter for steam, liquids, or gases
RIM 20 Rotor Insertion Flowmeter
Courtesy Spirax Sarco
Combining multiple measurement capabilities into a single instrument is generally advantageous over installing separate devices to cover an array of parameters. A simple reduction in fittings and connection complexity can bring enough benefit to justify a selection of an instrument with expanded functionality.

Spirax Sarco provides a multivariable rotor insertion flowmeter, available in four configurations to match a broad range of flow measurement needs. All are based on a turbine rotor which is inserted in the fluid flow path. The instrument detects passage of the turbine blades by a sensor, using the measured frequency to determine flow velocity. Further processing with other measurements can provide volumetric and mass flow.

One version of the instrument delivers only volumetric flow rate. A second variant adds a temperature sensor and is capable of providing a temperature compensated mass flow reading. This model is often applied for measuring saturated steam.

A fuller featured version incorporates a pressure sensor along with the temperature sensor and can function as a flow computer, providing instantaneous readings of mass flow rate for gases, liquids, or steam. Several output signals can be configured to provide a selection of mass flow rate, volumetric flow rate, pressure, temperature, or density.

There is also a product version specifically intended for energy monitoring in applications involving steam, chilled water, or hot water. This multivariable version provides energy usage readings in selectable units, as well as supply and return temperatures, delta T, mass total and energy total.

The unique insertion design measures liquids, or gases, including steam, and can be installed without line shutdown. The unit is suitable for applications on line sizes from 2" to 80". More detail is found on the data sheet included below. Contact an instrumentation specialist and share your flow measurement requirements and challenges. The combination of your process knowledge and their product application expertise will produce effective solutions.

Tuesday, August 9, 2016

Methods of Measurement For Boiler Drum Water Level

gas fired boilers in boiler room
There are numerous boiler water level measurement methods
Steam boilers have a long history in commercial, industrial, even residential applications. The steam they produce can be used to deliver heat, or to drive mechanical equipment and other processes. Maintaining the right boiler operating conditions is essential to safe operation and achieving the best use of fuel.

Boiler water level measurement is one of the essential elements of proper operation. Accurate and effective level measurement will indicate water levels that are too high or too low, both of which can have negative impact.

Spirax Sarco, a globally recognized leader in the development and production of steam related specialties, has developed content that summarizes various methods and technologies used to measure water level in boilers. Each is described in detail, with explanations of the technology, including some mathematical formulas. The piece is well illustrated and some advantages associated with each method are included. The document is from the company's website, under the Resources > Steam Engineering Tutorials section and provided in its entirety below.

Share your steam related challenges with a Spirax Sarco representative, specialists in helping achieve maximum performance from steam systems.



Tuesday, June 7, 2016

Clean Steam Generator Packaged and Ready to Run

packaged clean steam generator with all needed controls and specialties
Packaged Clean Steam Generator
Courtesy Spirax Sarco
There are many applications for clean steam throughout the industrial processing, food and beverage, pharmaceutical, institutional, electronics, and healthcare fields. Clean steam is produced by a secondary generator using a controlled feedwater source free of contaminates that may be detrimental to the process or activity where the final steam product is used. An example, applicable in many areas, is humidification of supply air in a plant, commercial, or institutional building. In some humidification designs, steam is injected or dispersed directly into the air flowing through a duct delivering supply air to occupied spaces. The steam, absorbed by the supply air and increasing its moisture content, becomes part of the atmosphere in the human occupied space. Carryover of commercial boiler feedwater chemicals or other potential contaminates will adversely impact the air quality. A secondary clean steam generator, heated with steam from the central plant boiler and utilizing properly treated or purified feedwater, delivers steam to the humidification system free of unwanted substances.

The application of a familiar commercial boiler as a secondary generator is generally not a solution to the production of clean steam. In most instances of clean steam generation, the feedwater is treated and purified to a condition that makes it aggressive to the range of steel types used in the fabrication of boilers intended for common industrial use. Clean steam generators need fabrication from stainless steel or other metals that can withstand the corrosive effects of purified water.

Spirax Sarco, known globally for their expertise in steam specialties, provides a packaged answer to the need for clean steam. The company's CSM-C 600 Compact Clean Steam Generator includes everything needed to produce clean steam, once utilities are connected. This complete solution simplifies the task of upgrading an existing process to utilize clean steam or provide new capacity.

A technical data sheet for the unit is provided below. For more information or application assistance, reach out to a product specialist and share your process steam challenges. The best solutions come from combining your process knowledge with their product application expertise.



Tuesday, November 10, 2015

Pipeline Strainers: Proper Selection and Application

Pipeline Basket Strainer Cutaway View
Basket Strainer
Courtesy Spirax Sarco
Pipeline strainers are one of those simple devices that perform a critical role in maintaining the smooth operation of any piping system. They are found in any operation that has fluid moving through a pipe, and their proper selection and application is the subject of a great tutorial authored by the experts at Spirax Sarco, a premiere manufacturer of specialties for industrial piping systems.

One of the basic tenets of industrial process control operations is to maintain a specified function or outcome, to keep things working. Reduced to its simplest, the function of a strainer is to trap materials flowing in the pipeline that should not be there. Rust, scale, joint compound, and particulate materials can impact the function of valves and other elements in the system. A strainer will trap and hold undesirable material, for removal at a later time.

The attached article is excerpted from the company's extensive tutorial library, which you can access by contacting an application specialist. That same application specialist can provide additional detail at any level you need, as well as work with you to meet application challenges and improve your industrial or commercial operations.


Thursday, October 29, 2015

Steam Heat Exchanger Stall - Eliminate It For Best Performance

Steam Heat Exchanger
Industrial Steam Heat Exchanger
Courtesy JFD Tube & Coil Products
Efficient and reliable operation is always an objective of a steam system owner or operator. If your system employs heat exchangers, an understanding of heat exchanger stall will put you on a path to efficient operation, lower maintenance, and possibly longer useful life for major parts of your system.

Heat exchanger stall occurs when low load conditions reduce the steam pressure in the heat exchanger, decreasing the pressure differential across the steam trap to a point below the back pressure in the condensate line. The resulting condition causes condensate to back up into the heat exchanger, reducing its efficiency. There are other negative effects that are illustrated in the animated video below, produced by world recognized steam system experts Spirax Sarco and presented by Mountain States Engineering, a distributor in the Western US.

The video is useful and comprehensible to a wide range of  skill and knowledge levels. It takes only four minutes to view, and will leave you with a better understanding of how you can get consistent and efficient performance from your steam system.

For a steam system survey and evaluation, contact the engineers at Mountain States Engineering. They have the technical knowledge, products, and other resources to deliver solid and positive solutions for keeping your steam systems at peak operation.


Wednesday, October 21, 2015

What You Should Know About Industrial Steam

Electric power generation plant
Electric Power Generation Plant
One of many industrial and commercial uses of steam.
Steam has been an important part of industrial operations since long before your parents were born, and not just for electric power generation. The staying power of steam for commercial and industrial operations stems from its use as a delivery medium for power, heat, and moisture. Today, other than for power generation, steam is frequently used as a method of delivering heat. That, and a range of other uses throughout industry mean that your familiarity with the various elements of a steam production and delivery system are a key part of your personal knowledge base. Your understanding of the basics will serve you well in planning sessions, project discussions, and decision making throughout your industrial career. Even if you are not an engineer, do not carry a tool bag, and only wear a hardhat when you visit the plant floor, knowing about steam systems can boost your decision making skills and confidence on projects where steam is employed.

Spirax Sarco, a world class manufacturer of products and turnkey solutions for the control and efficient use of steam for industrial and commercial users, has produced a set of tutorials that allow you to learn about a wide range of topics directly related to the production and use of steam in industrial and commercial settings. The tutorials are grouped in major sections, with subtopics dividing each subject into smaller parts, making it easy to find a specific topic or break your knowledge gathering operation into more manageable pieces. Major topics include:

  • Introduction
  • Steam Engineering Principles and Heat Transfer
  • The Boiler House
  • Flow Metering
  • Basic Control Theory
  • Control Hardware: Electric/Pneumatic Actuation
  • Control Hardware: Self-acting Actuation
  • Control Applications
  • Safety Valves
  • Steam Distribution
  • Steam Traps and Steam Trapping
  • Pipeline Ancillaries
  • Condensate Removal
  • Condensate Recovery
  • Desuperheating
  • Equations
Few of us will want or need to get through all of it. This is, however, and excellent resource for stakeholders that want to have a bookmark where they can build or refresh their knowledge about the subject. You can gain access to the tutorials through contact with a sales engineer, another valuable resource you should employ in seeking industrial process control solutions.