Showing posts with label Wyoming. Show all posts
Showing posts with label Wyoming. Show all posts

Tuesday, August 14, 2018

Industrial Control Valve Basics

Understanding industrial control valve design and operation is very important if you work as a process engineer, a plant maintenance person, or if you design process control loops. Control valves are used extensively in power plants, pulp and paper mills, chemical manufacturing, petro-chemical processing, mining facilities, HVAC and steam distribution systems.

There are many types, manufacturers, body styles, and specialized features, but the they all share some basics operating principles. The video below explains components, operation, and fundamentals of how control valves operate.

https://mnteng.com
303-232-4100

Monday, July 23, 2018

Introducing VSI Controls Control Valves

VSI Controls
VSI Controls™, a newly-formed control valve company and wholly-owned subsidiary of PetrolValves™, offers Customers an exciting alternative to procure general and severe service rotary and reciprocating control valve systems that provide a best-fit solution for their processes.

VSI Controls™ combines the products and technology of Valtek Sulamericana™ - a leading control valves system manufacturer with 35 years’ experience supplying severe service solutions - with the financial strength, global infrastructure and manufacturing and technical prowess of PetrolValves™.

Company Strengths
  • A long history of technology and innovation originating from Valtek Sulamericana™. 
  • The financial strength and global infrastructure of PetrolValves™ 
  • A highly experienced and skilled technical team of control valve experts
Their product offering can be reviewed in the embedded document below, or you can download a PDF of the VSI Controls Control Valve Catalog here.

For more information, contact Mountain States Engineering & Controls by visiting https://mnteng.com or calling 303-232-4100.


Monday, July 16, 2018

Hazardous Area Adjustable Pressure Switch with Turck® Connector Eliminates Need for Junction Box

CCS Series 6900GE* and 6900GZE*Custom Control Sensors (CCS) is a manufacturer of pressure, temperature and liquid flow switches and sensors for the aerospace, defense, industrial and energy markets. They have a new pressure switch design with an integrated Turck® electrical connection that provides an outstanding seal and eliminates the need for a junction box.

CCS Series 6900GE* and 6900GZE*

The Turck® electrical connection provides easy “plug and play” in Class I, Division 2 applications and superior ingress protection.
  • No electrical junction box required.
  • Highly reliable devices utilizing the CCS Dual-Snap® Belleville disc spring principle pioneered by CCS’ engineers.
  • Engineering based on aerospace technology.
  • Rigid, compact and internally adjustable for convenient field set point adjustment.
  • Repeatable and stable set points.
  • Vibration and shock resistant.
  • High cycle life.
  • High over-pressure capability. (System and Proof)
  • Hermetically sealed electrical assembly for environmental protection.
Adjustable set point range:
1 to 3400 PSIG 0.07 to 234 bar 6.89 to 23400 kPa

Operating temperature: Temperature limits change with O-ring selection. -40° to 176°F (-40° to 80°C)

Standard features:
  • CE Mark
  • CRN
  • Dual Seal: ANSI/ISA-12.27.01
  • NACE MR0175 / ISO 15156
  • NEMA: 4, 7, 9,13 / IP66
  • U.L. / cUL
  • Hermetically Sealed Electrical Assembly
  • 316 SST Electrical Assembly
For more information, contact Mountain States Engineering & Controls by visiting https://mnteng.com or by calling 303-232-4100.

Thursday, June 14, 2018

Mountain States Engineering and Controls Products

Mountain States Engineering and Controls represents some of the most recognized and innovative manufacturers in the market today. In some relationships with our manufacturers, Mountain States Engineering and Controls acts as a representative, and with others as a distributor. Depending on the complexity of the application or the product, some material is sold exclusively on a direct basis, where other products are made available through authorized stocking distributors or select wholesalers.

Mountain States Engineering and Controls' products solve challenging problems for industrial and commercial applications in the power, chemical, mining, energy, water treatment, and manufacturing industries as well as in universities, hospitals, and government facilities.

https://mnteng.com
303-232-4100

Tuesday, May 22, 2018

Design of Fluid Systems - Steam Utilization Handbook

Steam Utilization
Recognizing the on-going need for education as it relates to the fundamentals of steam including the most efficient use of its heat content, Spirax Sarco has developed the following handbook on steam ulilization.

This handbook represents over 100 years of steam experience in the proper selection, sizing and application of steam traps, pressure and temperature controls, and condensate recovery systems in major industrial plants throughout the world.

You can review the embedded document below, or you can download your own copy of the "Design of Fluid Systems - Steam Utilization Handbook" here.

Monday, April 30, 2018

Lined and Sleeved Valves Used in Mining Operations

FluoroSeal® Non-Lubricated Plug Valves
Flouroseal Plug Valve
Mining applications can be hard on the equipment. Abrasive, corrosive, erosive — all those conditions apply in varying proportions. FluoroSeal® Non-Lubricated Plug Valves, both Sleeved and Lined, can handle even the hardest of condition combinations, in a variety of mining operations:
  1. Alumina Refineries 
  2. Bauxite
  3. Carbon Strips
  4. Copper
  5. Cyanide
  6. Gold
  7. Lime Slurry
  8. Nickel
  9. Phosphoric Acid
  10. Sulfuric Acid
Read the application note below, or download the Lined & Sleeved Valves for Mining PDF here.

Thursday, April 19, 2018

Mountain States Engineering & Controls

Mountain States Engineering & Controls is a Manufacturer's Representative & Distributor of process equipment and controls headquartered in Lakewood, Colorado since 1978. We serve the markets of Colorado, New Mexico, Wyoming, Montana, Utah, Nevada, Idaho, and the western Dakotas.

https://mnteng.com
303-232-4100

Tuesday, March 27, 2018

Steam - Desuperheating and Attemperation

electric power generation plant
Steam is a motive force used to generate electric power
Industrial operations of many types utilize steam as a heat or power source, plus there is electric power generation. Steam is an important sort of "back office" component of the lives of many dwellers in modern economies.
What is steam?
Sorry, but we need to get everybody on the same page here. Steam is water vapor, produced by the application of heat to water. In order for steam to do work and serve as a useful energy source, it must be under pressure. There can be applications that employ steam at atmospheric pressure, but most are pressurized.

The heat goes on, the water boils, steam is produced and flows through the piping system to where it is used. Sounds simple, sounds easy. It is not. There are intricacies of designing and operating a steam system that determine its raw performance, as well as how efficiently it uses the fuel or other heat source employed to boil water. Steam utilization equipment is also carefully designed to provide its rated performance when supplied with steam of a given condition.

Steam at any given pressure has a saturation temperature, the temperature at which the vaporized water content of the steam is at its maximum level. Heat steam above its saturation temperature and you have superheated steam. Cool it below the saturation temperature and vapor will start to condense. The way in which the steam is to be used determines whether, and how much, superheat is desirable or necessary.
  • Turbine operations benefit from properly superheated steam because it avoids exposure of the turbine to liquid water droplets, generally a source of surface erosion and other accelerated wear.
  • Heat exchanger performance is based upon certain inlet conditions, one of which is the degree of superheat.
  • Maintaining sufficient superheat throughout a continuously operating steam system minimizes the need for, and size of, a condensate return system
Processes are designed to deliver a predictable output when provided with known inputs. In the case of steam, the temperature of the steam may be an input requiring control. This brings us to attemperation, which in the case of steam most often refers to lowering the temperature of a steam supply. Attemperation and desuperheating (reducing the degree of superheat) are accomplished in a similar fashion, but with differing objectives. Attemperation involves simply controlling the temperature of the steam, without any direct regard for the level of superheat. Desuperheating, as a control operation, is not directly related to the temperature of the steam, just the degree by which it exceeds the saturation temperature at the current condition. For attemperation, steam temperature measurement is all that is needed. For desuperheating, pressure and temperature measurements are needed. Decreasing the temperature of superheated steam will naturally reduce the amount of superheat.

Some process requirements may focus on temperature of the delivered steam, without regard to superheat level. Others will rely on a specified level of superheat. The application scenarios are vast, with equipment available to accomplish whatever is needed.

Either operation can be accomplished with a specialized heat exchanger or other device that extracts heat from the steam. Another option relies on the addition of atomized water to the flowing steam to manage temperature or superheat level. Share your steam system challenges with steam system experts, leveraging your own knowledge and experience with their product application expertise to develop an effective solution.

Wednesday, March 7, 2018

Combining Rupture Discs With Pressure Relief Valves

pressure safety valve
A safety valve protects closed systems from excessive pressure
Image courtesy Kunkle Valve Division - Pentair
Safety and pressure relief valves are common elements of any pressurized system. Their general purpose is to provide a positive means of preventing system pressure from exceeding a preset value, avoiding uncontrolled events that could result in damage to personnel, environment, or assets. Their operating principle and construction are comparatively simple and well understood.

Long term exposure of a relief valve to certain types of process media can result in corrosion, material buildup, or other conditions which may shorten the useful life of the valve, or worse, impair its proper operation. This excessive wear will increase the ongoing cost of maintaining or replacing a prematurely worn valve. One other aspect of relief valves can be the reduction in their seal integrity or force as the system pressure approaches the setpoint. This could possibly lead to fugitive emissions, an undesirable condition.

An effective approach to mitigating some of the effects of exposure to the process media is to install a rupture disc upstream of the safety valve inlet. Isolating a relief or safety valve from the process media through the installation of a rupture disc upstream of the valve inlet eliminates exposure of the costly valve to effects of the media. It is necessary to establish proper rating and selection for the rupture disc to avoid any impairment of the overall operation of the relief valve, but the selection criteria are not complex. A number of benefits can accrue with this concept.

  • Rupture disc isolates the valve from the media, allowing application of less costly valves fabricated of non-exotic materials.
  • Rupture discs are leak free and bubble tight, eliminating possibility of fugitive emissions from the safety relief valve, especially when system pressure may approach valve setpoint.
  • Relief valve inventory can be evaluated for reduction.
  • Longer valve life.
  • Less downtime.

The additional cost for the rupture disc enhancement can have a reasonable payback period, with all factors considered. In any case, the rupture disc protection makes for a cleaner relief valve installation. Rupture discs and holders are available in sizes and materials for most applications. Share your ideas with a valve specialist, combining your process knowledge with their product application expertise to develop an effective solution.

Friday, February 23, 2018

Industrial Diaphragm Valves

sectional drawing weir type diaphragm valve with pneumatic actuator
Section drawing of diaphragm valve, weir type,
with pneumatic actuator.
Image courtesy Gemu Valves, Inc.
Diaphragm valves are named for the means employed in their design to restrict the path of fluid flow through the valve. Most valve designs employ a rigid solid shape which is repositioned in the fluid path to regulate flow. Diaphragm valves are somewhat unique in their use of a flexible material that is deformed by a moving part connected to the valve operating mechanism. The diaphragm acts as the flow restrictor and seat. It also isolates the valve bonnet and stem from the flowing media.

The fluid path and diaphragm positioning and seating enable this valve type to be used for throttling or simple stop operations. They are generally tolerant of particulate matter entrained in the media. Selecting body and diaphragm materials that are compatible with the media are primary elements of achieving a successful application. The diaphragm is a wearing part and should be inspected periodically and replaced when necessary.

Diaphragm valves for industrial use are available in a range of materials and sizes to accommodate light through heavy duty applications.
  • Suitable for inert and corrosive liquid and gaseous media when proper valve body and diaphragm materials are selected
  • Bonnet and valve bodies available in metal or plastic construction
  • Insensitive to particulate media
  • Valve body and diaphragm available in various materials and designs
  • Compact design
  • Automation via pneumatic or electric means
Share your fluid process control challenges with valve application specialists. Leverage your own knowledge and experience with their product application expertise to develop an effective solution.

Sunday, February 18, 2018

Getting Benefit From Waste Steam With a Thermocompressor

steam thermocompressor
Steam thermocompressor enables use of waste steam
in higher pressure applications.
Image courtesy Spirax Sarco
Steam, with its utilization as a means of transferring heat, as well as a motive force, is found in use throughout many industries. The production of steam is a significant cost of operation for any business where it is employed. Steam, after performing its intended function, still contains a comparatively large amount of heat, so methods of recovering or utilizing that heat energy remaining in waste steam is a positive step in conservation.

Energy conservation and energy efficiency have contributed very large cost savings to many industrial and commercial operations over the past two decades. Projects with modest payback periods quickly contribute to the bottom line of the operation's balance sheet. It is not uncommon for  energy conservation and efficiency measures contribute to improvement in the overall functioning of the steam utilization equipment or systems. In order to save energy, it is generally necessary to exercise better control over equipment or system operation by gathering more information about the current operating state. This additional information, gathered through measurement instrumentation, often finds use in several ways that improve productivity and performance.

A thermocompressor is a type of ejector that mixes high pressure steam with a lower pressure steam flow, creating a usable discharge steam source and conserving, through reuse, the remaining heat content of the otherwise wasted low pressure steam. The device is compact and simple, with no moving parts or special maintenance requirements. Two general varieties are available. A fixed nozzle style is intended for applications with minimal variation in the supply and condition of the suction steam (the low pressure steam). Some control is achievable through the regulation of the high pressure steam flow with an external control valve. A second style provides a means of regulating the cross sectional area through which the high pressure steam flows in the nozzle. This style is best applied when specific discharge flow or pressure is required, or there is significant variation in the inlet steam conditions.

Share your steam system challenges with a steam system application specialist. Leverage your own process and facilities knowledge and experience with their product application expertise to develop effective solutions.


Wednesday, February 7, 2018

Plug Valves - Right For Your Application?

industrial plug valve with manual operating handle
Plug valves incorporate design features making them
a positive choice for many fluid process applications.
Image courtesy Fluoroseal, Inc.
There are common components to be found on almost every process system that involves fluid control. Regardless of the operation's scale, pumps, piping, tanks and valves are likely to be part of the system.

Valves, of which there are many types, provide control over the flow rate, direction and routing of fluids in a processing operation. Flow can be started, stopped or modulated between zero and full rate using a properly sized and configured valve. Some valves enable media flow to be diverted to a selection of outlets, in lieu of a single inlet and outlet pair. Specialized valves regulate inlet or outlet pressure, or prevent fluid flow from going in an undesirable direction. All of these capabilities are packaged into differing valve product offerings that present a very large selection array to a process designer or engineer.

Industrial flow control valve types are generally classified according to the structure or arrangement contained within the valve body that provides obstruction to fluid flow. Some of the common types are ball, butterfly, gate, globe, and plug. Surely, there are more valve types, and this article is not intended to list them all. Some of our previous blogs have discussed selection considerations for gate, ball and butterfly valves. This article will focus on one of the oldest valve types, the plug valve.

Plug valves, like ball and butterfly valves, span from fully open to fully closed positions with a shaft rotation of 90 degrees. The “plug” in a plug valve is installed in the flow path within the valve body and rotated by means of a stem or shaft extending to the exterior of the body. Plugs are often tapered toward the bottom and are fitted to a seating surface in the valve body cavity that prevents fluid from bypassing the plug. An opening through the plug, the port, can be shaped to provide particular flow characteristics. There are numerous variants of the basic plug valve which may make it suitable for particular applications. One common variant is the lined or sleeved plug valve, with an insert or interior lining of material that creates an isolating barrier between the valve body and the media. This allows use of less expensive materials for the body construction that may be otherwise subject to corrosion by exposure to aggressive media.

Positive attributes of plug valves.

  • 90 degree rotation from open to closed provides fast operation.
  • With proper configuration, can be well suited for frequent operation.
  • Availability of corrosion resistant liner may provide comparative cost savings because valve body can be constructed of less expensive material.
  • Design is simple and employs a low parts count.
  • Valve can be serviced in place.
  • Generally, low resistance to flow when fully open.
  • Reliable leak-tight service due to tapered plug wedging action, replaceable sleeve, and injection of lubricant in some variants.

Potential issues of concern.

  • Higher friction in the plug closure mechanism may require comparatively higher operating torque than other valve types.
  • Without a specially designed plug, generally not well suited for throttling applications.
  • Rapid shutoff delivered by plug design may not be suitable for some applications where hammering may occur.

Share your fluid control application challenges with a valve and automation specialist. Leverage your own knowledge and experience with their product application expertise to develop an effective solution.

Friday, February 2, 2018

Pressure and Temperature Switches for Rugged Industrial Applications

adjustable pressure switch
This adjustable pressure switch is one of many variants
available to suit every application.
Image courtesy Custom Control Sensors (CCS)
Matching up the most appropriate control device for a processing application, taking all factors into account, may not always result in a selection of the most technologically advanced, complex or full featured solution. Sometimes, all that is needed is a device with a limited performance set, but one that performs its functions reliably in a challenging industrial environment.

Industrial versions of temperature, pressure and differential pressure switches are fitted with appropriate mountings for the process and housings for the installation environment. Hazardous location installation can be accommodated. High current switch ratings and auxiliary functions add to the usefulness of these devices. There are almost countless variants available to accommodate almost every application. Don’t overlook these simple and reliable mechanical devices as candidates for application in temperature and pressure control. Share your application requirements and challenges with product specialists for useful recommendations.



Thursday, January 25, 2018

Krombach Brand Valves for Rugged Service Conditions

metal seated butterfly valve with actuator
Metal seated butterfly valves for aggressive process
applications are a hallmark of the Krombach brand.
Image courtesy Crane CPE
The Krombach branded valves, part of the Crane CPE product offering, target challenging applications in industrial settings that benefit from the use of valves specially designed for severe service. The brand also includes a standard product offering of valves and specialties for a broad range of common industrial applications.

The Krombach line includes:

  • Butterfly Valves - High performance, resilient seated, double-eccentric, triple offset and special purpose butterfly valves.
  • Ball Valves - Process one-piece, two-piece and three-piece, metal seated, soft seated and compact ball valves.
  • Globe and Angle Valves - Bronze, cast iron, cast steel and stainless steel globe and angle valves.
  • Gate Valves - Bronze, cast iron, cast steel and stainless steel gate valves.
  • Check Valves - Ball, dual-plate, foot, full body swing, steam stop, tilting disc, wafer style swing, nozzle-type and pressure seal check valves.
  • Vacuum Relief Valves - Available with flanged or threaded connections.
  • Aerating and Deaerating Valves - Essential for trouble-free operation of pipeline systems handling liquids.
  • Float Valves - Single seated and double seated versions for a variety of applications.
  • Throttle Valves - Available with flange connection, wafer- or weld-in type.
  • Bottom Drain Valves - Available manually operated or with a diaphragm actuator.

Below is a cutsheet providing an overview of the company's standard product categories. Whatever your fluid control application, share your challenges with the valve specialists at MSEC. Leverage your own process knowledge and experience with their product application expertise to develop effective valve and automation solutions.


Wednesday, January 10, 2018

Steam Trap For Heavily Contaminated Steam

cast iron float steam trap
The Float Trap series is available in carbon or stainless steel.
Image courtesy Spirax Sarco
Industrial process gear and equipment manufacturers are always tweaking designs, adding features, and creating new product variants in response to the challenges presented by the immeasurably broad range of application and operation scenarios for their products. Spirax Sarco is a globally recognized leader in the design and manufacture of steam system specialties, and has created a rugged steam trap to accommodate some tough challenges.

The company's FTC23 and FTS23 Float Trap products are ball float steam traps suitable for use with saturated and superheated steam. The units can be utilized on process equipment and for drainage of temperature controlled systems. These traps are specifically targeted at applications involving steam that may be carrying solids or incondensable gasses. Solids, if not purged from the system, can accumulate and foul the internal trap mechanism, leading to failure.

The company indicates that the main design feature is a self-cleaning float closing mechanism which maintains safe operation even in the presence of severe contamination. The positioning of the valve and seat also promote the discharge of the condensate, along with entrained contaminants. There is even a manual lever on the exterior of the trap that allows an operator to force the full opening of the valve, regardless of whether condensate is present. This operation facilitates fast removal of contaminants and maintains optimum performance.

The two models differ in their construction materials, with one having a carbon steel body, the other a stainless steel body. Internals are stainless steel on both units.

Share your challenges with the steam system specialists, leveraging your own knowledge and experience with their product application expertise.


Friday, January 5, 2018

Piston Isolation Valves For Steam and Condensate

carbon steel or stainless steel piston valve for steam or condensate
Simple and reliable piston isolation valve is well suited
for steam and condensate applications.
Image courtesy Spirax Sarco
Piston valves are serviceable and reliable valves that are well applied to isolation use in steam and condensate systems. Recently, Spirax Sarco, globally recognized manfacturer of steam system componentry, introduced their PV4 and PV6 lines of piston isolation valves targeted at steam and condensate applications.

The new valves are available with carbon steel or stainless steel bodies, with the internals of both being stainless steel. Screwed, socket weld and butt weld connections are available in 1/2" through 2" sizes. The operation is unidirectional, so installation must have the system flow according to the arrow on the body. The only other installation restriction is that the handwheel should be above the valve body.

Accommodated pressure and temperature ranges for the PV4 and PV6 will be suitable for a broad range of steam and condensate applications. Share your steam system challenges of all types with application specialists. Leverage your own knowledge and experience with their product application expertise to develop effective solutions.


Wednesday, December 13, 2017

Process Tuning

sliding gate industrial process control valve
This sliding gate industrial control valve could operate
under the command of a tuned process control loop.
Image courtesy Schubert & Salzer
Controller tuning is a process whereby a controlling device in a process has a response characterized to the needs of maintaining a process condition within certain limits under a range of varying disturbances to the process. Established guidelines for automation standards exist so that every process control operator can experience the same standard of safety and maintenance in a way universally understandable. The International Society of Automation (ISA) promotes different tuning standards based on the particulars of the control process, such as temperature or liquid level control.

Liquid-level control loops are usually considered non-self-regulating processes. They require external moderation to remain uniform and for errors to either be mitigated or corrected. General rules which exist for adjusting and tuning loops for self-regulating process, such as temperature control, are often inapplicable to liquid level loops, making liquid level control loops somewhat unique in their tuning.

In order to address the counter intuitive nature of these process loops, start with a model of the loop’s ideal functionality. This can serve as a reference. After doing so, incorporate potential variables into the ideal loop and evaluate their impact on the model process. Checking equipment, then modeling the process dynamics, allows engineers to observe the manner in which the process reacts in relation to the target or goal performance.

Whereas other loops can be tuned via trial and error, liquid-level control loops should not be due to the nature of their reactions to controller input being different than that of other processes. Instead, the parameters for the control loop need to be carefully engineered, rather than specifically tuned. Liquid level loops are integrating processes, rather than self-regulating. A self-regulating process will, with no disturbances to the variables, reach an equilibrium at which the process value remains constant. Consider a non-self-regulating liquid level control loop where the fill valve is open. No equilibrium point will be achieved, just overflow. The distinction between the two types is key to understanding why tuning liquid level loops is a different process than self-regulating control loops.

Temperature and thermal loops, depending upon the process dynamics, present varying degrees of tuning challenge. PID temperature controllers are employed to adjust the heat input to a process to affect a change in, or maintenance of, a process temperature setpoint. Without proper tuning, the controller output and the resulting process performance can oscillate or be slow to respond, with a negative impact on process performance or yield. Many PID controllers have an auto-tune feature, some of which are more effective than others. The best results achievable by PID controller tuning are accomplished by defining a setpoint prior to the auto-tune process and starting the tuning procedure from a stable process condition. Tuning the controller in the same process environment in which it will operate can also be very helpful.

Share your process measurement and control challenges with experienced application specialists, combining your own knowledge and experience with their product application expertise to develop effective solutions.

Thursday, December 7, 2017

Compressed Air as a Motive Force

coalescing filters for compressed air
Coalescing filters are common components of a compressed
air system.
Image courtesy SPX Pneumatic Products
Compressed air is utilized throughout every industry and many commercial settings. While primarily used as a motive force, compressed air serves as a utility in many applications in the oil and gas, chemical and petrochemical, nuclear power, food, pharmaceutical, and automotive industries. The presence and use of compressed air across multiple industries is so essential, its importance is comparable to utilities like electricity, gas, and water.

In the control of fluid processes, compresses air facilitates operation and control of valves and other instruments. Dry air, with a sufficiently depressed dew point, can ensure process materials and equipment stay free of moisture and its associated impediments to smooth operation. The use of compressed air as either a motive force or a utility imparts minimum requirements on its quality or constituents. Confounding substances, such as particulates, water, and oil, may be entrained or contained in a compressed air stream. Various methods of filtration and moisture removal may be necessary to condition or process the compressed air in order to deliver consistent quality.

The advantages of using compressed air as a motive force in industrial settings are more numerous than appropriate for listing here, but consider that tools driven by compressed air can be more compact, lower weight and less prone to overheating than electrically driven tools. Air driven devices tend to have reduced parts count and require little maintenance, whether tools, valve actuators, pistons, or other machines. Compressed air driven devices can be fashioned to amplify the power of an electrical signal, enabling a simpler means of powering some types of loads. Compressed air, by its nature, presents no electrical hazards to the workplace.

Whenever air driven devices are utilized, attention must be given to compressed air production. The pressure, maximum flow rate demand, and compressed air quality must meet the process or operation requirements. Share your compressed air system challenges with specialists, leveraging your own knowledge and experience with their product application expertise to develop effective solutions.

Tuesday, November 28, 2017

Pipeline Cyber Security

binary stream representing industrial process control network data transfer and cyber security threat
Cybersecurity is a process control challenge that consistently evolves as new technologies come into use and new threats emerge. Since process control methods are constantly developing, the protective measures need to match the rate of change to ensure adequate levels of protection are in place. Pipelines used in the oil and gas industry, as well as in the transportation of a multitude of liquid and gaseous products, account for more than 2.3 million miles of process piping in the United States.  Natural gas pipelines are commonly monitored and controlled by, for example, programmable logic controllers or other microprocessor and communications based systems, responsible for flow regulation and various process conditions. Because of the prevalence of these systems, they are a target of increasing attacks, on both PLCs and other SCADA related devices, such as compressors, remote terminal units, communication networks, and other critical process infrastructure elements.

While developments in technology have provided operating advantages and improvements to the process industries, the more complex and advanced the systems may also increase the exposure to malicious penetration and mischief by unauthorized parties (hackers). Because of this, diligence by industry professionals, while always a strong component of protecting against outside threats, has been augmented via new guidelines meant to better prepare all process operators against more coordinated cyber-attacks.

Basic preventative measures, such as a firewall, are no longer a sufficient bulwark against the increasing threats. Instead, the entire process must be evaluated and monitored so that each individual piece of the network is understood fully. If a part of the system starts behaving in an abnormal way, then an understanding of what that specific PLC or component affects must be immediately known. The most effective protective programs will be able to function without needing any downtime, and will also be able to learn the network easily. Whenever the defense program gets triggered, it needs to not only provide a general alert to the process operator, but must also be able to provide context so that the previous knowledge of how the system works can be applied to mitigate the current problem.

Currently, the oil and gas industry has transitioned to what is being termed a ‘holistic’ approach to cyber defense. In order for the best security possible to be employed, the human element of process control must function in tandem with the autonomous programs. The human component of process operation, where it exists, can be unpredictable and present vulnerabilities that may not be known or anticipated. Everything must be considered.

Industrial process operation involves many areas of risk, with cyber attack being just one. The right kind of planning and response to risk can mitigate the potential impact. Security efforts, technology, and knowledge must keep pace with threats which emerge to process pipeline security. Mountain States Engineering and Controls participates in the oil and gas industry throughout the western U.S.

Thursday, November 16, 2017

Forced Draft Cooling Tower With 20 Year Warranty

corrosion resistant HDPE cooling tower rated 50 tons with forced draft
Forced draft corrosion resistant cooling tower
with forced draft, rated 50 tons. Pioneer series.
Image courtesy Delta Cooling Towers
Delta Cooling Towers specializes in the design and construction of corrosion resistant cooling towers and similar equipment. Much of the tower construction is HDPE or other non-metallic material, enabling the company to offer a 20 year warranty on their equipment.

Cooling towers are employed worldwide in HVAC applications and process fluid cooling. In addition to their industry leading corrosion resistance, Delta Cooling Towers also offers anti-microbial protection which combats the growth of microbes responsible for Legionnaires Disease and other respiratory ailments. The various product lines cover heat transfer capacities to accommodate any installation.

There is a lexicon employed in the description of cooling tower performance and operation. Some commonly used terms, along with their meaning, is provided below. The terms and their meanings is pulled from the owner's manual provided by Delta Cooling Towers for their Pioneer series of forced draft cooling towers.

Share your process and HVAC cooling challenges with application experts, leveraging your own knowledge and experience with their product application expertise to develop an effective solution.

Cooling Tower Terms and Definitions

  • BTU - A BTU is the heat energy required to raise the temperature of one pound of water one degree Fahrenheit in the range from 32° F. to 212° F.
  • Cooling Range - The difference in temperature between the hot water entering the tower and the cold water leaving the tower is the cooling range.
  • Approach - The difference between the temperature of the cold water leaving the tower and the wet-bulb temperature of the air is known as the approach. The approach fixes the operating temperature of the tower and is a most important parameter in determining both tower size and cost.
  • Drift - The water entrained in the air flow and discharged to the atmosphere. Drift loss does not include water lost by evaporation. Proper tower design and operation can minimize drift loss.
  • Heat Load - The amount of heat to be removed from the circulating water through the tower. Heat load is equal to water circulation rate (gpm) times the cooling range times 500 and is expressed in BTU/hr. Heat load is also an important parameter in determining tower size and cost.
  • Ton - An evaporative cooling ton is 15,000 BTU's per hour.
  • Wet-Bulb Temperature - The lowest temperature that water theoretically can reach by evaporation. Wet-Bulb Temperature is an extremely important parameter in tower selection and design and should be measured by a psychrometer.
  • Pumping Head - The pressure required to pump the water from the tower basin, through the entire system and return to the top of the tower.
  • Make-Up - The amount of water required to replace normal losses caused by bleedoff, drift, and evaporation.
  • Bleed Off (Blowdown) - The circulating water in the tower which is discharged to waste to help keep the dissolved solids concentrating in the water below a maximum allowable limit. As a result of evaporation, dissolved solids concentration will continually increase unless reduced by bleed off.