Showing posts with label valve automation. Show all posts
Showing posts with label valve automation. Show all posts

Sunday, September 30, 2018

Mountain States Engineering & Controls


Since 1978, Mountain States Engineering & Controls has served the industrial markets of Colorado, New Mexico, Wyoming, Montana, Utah, Nevada, Idaho, and the western Dakotas.  MSEC is a Manufacturer's Representative & Distributor of process equipment and controls headquartered in Lakewood, Colorado.

We support customers with application, design, and product start-up assistance as well as after-the-sale service and training. It is our absolute goal to ensure that our products and services exceed your expectations.

Mountain States Engineering & Controls represents some of the most recognized and innovative manufacturers in the market today, and carries high quality products designed to meet our customer's most demanding applications. MSEC products solve challenging problems for industrial and commercial applications in the power, chemical, mining, energy, water treatment, and manufacturing industries as well as in universities, hospitals, and government  facilities.

Mountain States Engineering & Controls has on-staff experts ready to assist you in selecting the right product for your application. As we have been for over 40 years, we're there when you need us.

https://mnteng.com
303-232-4100

Thursday, October 26, 2017

When to Use a Globe Valve for Fluid Process Control

cast iron globe valves
Cast iron globe valves are utilized extensively in steam,
HVAC, and other commercial and industrial applications
Image courtesy of Crane Co.
Industrial process control often involves the regulation of fluid flow. There are almost uncountable types and variants of flow control valves, each with a particular set of attributes that can make it the advantageous choice an application.

When the process calls for controlling flow over a range of possible values, known as throttling, a globe valve may be a good candidate for the application.

Globe valves are characterized by the change in direction of fluid flow as it passes through the valve and around the plug positioned in an opening through which fluid must pass. The plug is connected to a stem extending to the exterior of the valve body through the bonnet. Movement of the stem will reposition the plug in relation to the opening, providing a successively larger or smaller opening area through which fluid can pass.

Globe valves are available in tee, angle, and wye configurations, as well as an enormous range of special configurations to suit specific applications.
simplified globe valve diagram
Simplified globe valve diagram
Image courtesy Wikipedia


What are some potential advantages of globe valves?
  • Good throttling and shutoff capability
  • Comparatively easy maintenance
  • Comparatively short travel of plug from open to closed position
  • Seats can usually be resurfaced when worn
What are some limiting factors for globe valves?
  • Higher valve pressure drop than some other designs
  • No straight through fluid path
  • Potentially higher actuator torque requirements than other valve types
  • Seal area is unprotected from exposure to process fluid flow
When flow throttling capability is the overriding concern for an application, a globe valve is a good candidate for consideration. Share your flow control challenges with valve and automation specialists. Combining your process knowledge and experience with their product application expertise will produce effective solutions.

Monday, May 22, 2017

Introduction to Valve Parts or Components

cutaway view forged steel gate valve
Cutaway view of a forged steel gate valve
Courtesy Crane-ChemPharmaEnergy
Although there are many different classifications of valves specific to their respective functions, there are standard parts or components of valves you may find regardless of the classification. They are the valve body, bonnet, trim, seat, stem, actuator, and packing.

The Valve Body is the primary boundary of a pressure valve which serves as the framework for the entire valve’s assembly. The body resists fluid pressure loads from connected inlet and outlet piping; the piping is connected through threaded, bolted, or welded joints.

The Valve Bonnet is the opening of the Valve Body’s cover. Bonnets can vary in design and model, is built using the same material as the Valve Body, and is also connected to the entire assembly through threaded, bolted, or welded joints.

The Valve Trim collectively refers to all the replaceable parts in a valve, e.g. the disk, seat, stem, and sleeves––all which guide the stem as well.

The Valve Disk allows the passage or stoppage of flow. Disks provide reliable wear properties and differ in what they look like per valve type. For example, in the case of a ball valve, the disk is called a ball, whereas for a plug valve it is a plug.

The Valve Seat(s) or it’s seal rings provide surface seating for the disk. For example, a globe valve requires only one seat and this seat forms a seal with the disk to stop flow.

The Valve Stem provides the proper position which will allow the opening and closing movement of the Valve Disk. Therefore, it is connected to the Valve Disk on one end and the Valve Hand Wheel or the Valve Actuator on the other.

The Valve Yoke is the final piece in the valve’s assembly; the Yoke connects the Valve Bonnet with the actuating mechanism. The Valve Stem passes through the top of the Yoke which holds the Yoke or stem nut.

There are countless variants of valve designs, sizes, and configurations. These basic parts will be found on most, but the particular form and arrangement of the part may provide an advantage when employed for a particular application. Share your industrial process valve requirements and challenges with a valve specialist. Combine your own process knowledge and experience with their product application expertise to develop an effective solution.

Friday, June 19, 2015

Industrial Control Valve Basics - An Introduction

Industrial process control valve
Globe Valve with Pneumatic Actuator
Courtesy Warren Controls
Valves, mechanical devices able to control flow or pressure in a process or system, are as ubiquitous as any industrial process control element. As essential components of piping systems conveying liquid, gas, vapor, or slurry, valves are a component with which almost every industrial process and control engineer will require more than entry level familiarity. They are the controlling element in almost any fluid handling system. What are some of the very basic knowledge points for specifying and selecting a control valve?

There are numerous types of valves available, including butterfly, ball, check, globe, gate, diaphragm, plug, and control valves as the most common. Particular valve types can be better suited to the medium being controlled, or have functional capabilities making them a better selection for your process application. Within each type there will be a wide range of options and features that allow for close tailoring of the complete valve assembly to match the application requirements.  Some valves can be self-operated, while others require manual operation. A pneumatic, hydraulic, or electric actuator can be employed on certain configurations to provide for remote control of the valve by a human operator or automatic controller.
General valve functions include:
  • Flow start or stop
  • Flow rate increase or reduction
  • Diversion of flow in another direction
  • Regulation of a flow or process pressure

Industrial process control valves are often classified according to their mechanical movement. Some common examples include:
  • Linear motion valves, in which the closure element moves in a straight (linear) direction to control the flow. Gate, globe, and diaphragm valves are in this category.
  • Rotary motion valves have a closure that follows an angular or circular path. Butterfly and ball valves are in this group.
  • Quarter turn valves, a subset of the rotary motion class, traverse from the open to closed state when the closure element (for example, the ball in a ball valve) is rotated through a quarter of a full turn. This type is best suited for operations calling for either fully open or closed regulation, with no need for control at points in between those two states.

Each industrial control valve application and installation will have its own set of very specific requirements. The goal of the specification and selection process should be to provide safe operation, low maintenance requirements, robust and accurate operation. A manufacturer's sales engineer can be a useful source for application and specification information and assistance.
Oil Pipeline Valve
Ball Valve Installed in Pipeline
Courtesy DHV

Monday, August 18, 2014

Introduction to Electric Valve Actuators

electric actuator
Crane 44000 Series Electric Actuator
In many industrial control applications, a motorized valve can be used in place of a pneumatically operated valve. Motorized valves use electricity and an electric motor to operate a valve. The spindle of the valve is connected to the motorized (electric) actuator via linkages (brackets and couplings) or are directly mounted to the shaft of the valve. Valves most commonly operated by electric actuators are globe, gate ball or butterfly valves.

Electric actuators are widely used in control systems because they are easy to interface with control systems. Since the control signals are also electric, the same conduit or conduit paths can be used. Electricity is normally available and can be run over long distances, unlike fluid power (pneumatic) which requires pumps and compressors. Special construction and wiring options must be considered when working in hazardous location though.