Monday, February 8, 2016

A Framework For Thinking About Process Instrument Protection

industrial process steam piping and gauges
Provide adequate levels of protection for instruments
and controls that keep your process running
The performance of every process is critical to something or someone. Keeping a process operating within specification requires measurement, and it requires some element of control. The devices we use to measure process variables, while necessary and critical in their own right, are also a possible source of failure for the process itself. Lose the output of your process instrumentation and you can incur substantial consequences ranging from minor to near catastrophic.

Just as your PLC or other master control system emulates decision patterns regarding the process, the measurement instrumentation functions as the sensory input array to that decision making device. Careful consideration when designing the instrumentation layout, as well as reviewing these five common sense recommendations will help you avoid instrument and process downtime.

Process generated extremes can make your device fail.

Search and plan for potential vibration, shock, temperature, pressure, or other excursions from the normal operating range that might result from normal or unexpected operation of the process equipment. Develop knowledge about what the possible process conditions might be, given the capabilities of the installed process machinery. Consult with instrument vendors about protective devices that can be installed to provide additional layers of protection for valuable instruments. Often, the protective devices are simple and relatively inexpensive.

Don't forget about the weather.

Certainly, if you have any part of the process installed outdoors, you need to be familiar with the range of possible weather conditions. Weather data is available for almost anywhere in the world, certainly in the developed world. Find out what the most extreme conditions have been at the installation site....ever. Planning and designing for improbable conditions, even adding a little headroom, can keep your process up when others may be down.

Keep in mind, also, that outdoor conditions can impact indoor conditions in buildings without climate control systems that maintain a steady state. This can be especially important when considering moisture content of the indoor air and potential for condensate to accumulate on instrument housings and electrical components. Extreme conditions of condensing atmospheric moisture can produce dripping water.

Know the security exposure of your devices.

With the prevalence of networked devices, consideration of who might commit acts of malice against the process or its stakeholders, and how they might go about it, should be an element of all project designs. A real or virtual intruder's ability to impact process operation through its measuring devices should be well understood. With that understanding, barriers can be put in place to detect or prevent any occurrences.

Physical contact hazards

Strike a balance between convenience and safety for measurement instrumentation. Access for calibration, maintenance, or observation are needed, but avoiding placement of devices in areas of human traffic can deliver good returns by reducing the probability of damage to the instruments. Everybody is trained, everybody is careful, but uncontrolled carts, dropped tools and boxes, and a host of other unexpected mishaps do happen from time to time, with the power to inject disorder into your world. Consider guards and physical barriers as additional layers of insurance.

Know moisture.

Electronics must be protected from harmful effects of moisture. Where there is air, there is usually moisture. Certain conditions related to weather or process operation may result in moisture laden air that can enter device enclosures. Guarding against the formation of condensate on electronics, and providing for the automatic discharge of any accumulated liquid is essential to avoiding failure. Many instrument enclosures are provided with a means to discharge moisture. Make sure installation instructions are followed and alterations are not made that inadvertently disable these functions.

Developing a thoughtful installation plan, along with reasonable maintenance, will result in an industrial process that is hardened against a long list of potential malfunctions. Discuss your application concerns with your instrument sales engineer. Their exposure to many different installations and applications, combined with your knowledge of the process and local conditions, will produce a positive outcome.

Industrial Control Systems Have Unique Cybersecurity Challenges

industrial control system cybersecurity
Industrial control systems have special
cybersecurity aspects.
The International Society of Automation is offering a free white paper entitled “What Executives Need to Know About Industrial Control Systems Cybersecurity”. The article provides useful commentary and information that establishes the scope of cybersecurity in the industrial process control space and provides a basic framework for understanding how every process may be impacted by lax cybersecurity efforts. The author, Joseph Weiss, differentiates Industrial Control System (ICS) cybersecurity from that of organizational IT through a review of various attributes common to both types, including message confidentiality, integrity, time criticality, and more. Any reader’s awareness and understanding of the cybersecurity risks to their operation will be enhanced through this article. I finished reading the article wanting more on the subject, and ISA is certainly a resource for additional content.

A quote from article...
“Cyber incidents have been defined by the US National Institute of Standards and Technology (NIST) as occurrences that jeopardize the confidentiality, integrity, or availability (CIA) of an information system.”
ICS cybersecurity extends beyond preventing malicious outside intruders from gaining access. It is an important part of maintaining the overall operating integrity of industrial processes. A holistic approach is advocated to identify physical risk factors to the process and its componentry (more on that in this blog post), as well as vulnerabilities that may prevent exploitation by unauthorized parties. Weiss goes on to describe the role and qualifications of the ICS Cybersecurity Expert, essentially an individual that can function effectively as an IT cybersecurity tech with the added skills of an industrial control systems expert.

A synopsis of attack events is provided in the article, with the author’s conclusion that not enough is being done to secure industrial control systems and the risk exposure is substantial in terms of potential threats to personnel, environment, and economy. By providing your name and email address, you can obtain the white paper from the ISA website. Your time spent obtaining and reading the article will be well spent.

For any specific information or recommendations regarding our products and cybersecurity, do not hesitate to contact us directly. We welcome any opportunity to help our customers meet their process control challenges.

Monday, February 1, 2016

Limit Switches On Valve Actuators Are A Valuable Option

industrial valve electric actuator with limit switches
Electric valve actuator with optional
limit switches
Courtesy Crane
Limit switches are devices which respond to the occurrence of a process condition by changing their contact state. In the industrial control field, their applications and product variations are almost countless. Essentially, the purpose of a limit switch is to serve as a trigger, indicating that some design condition has been achieved. The device provides only an indication of the transition from one condition to another, with no additional information. For example, a limit switch triggered by the opening of a window can only deliver an indication that the window is open, not the degree to which it is open. Most often, the device will have an actuator that is positively activated only by the design condition and mechanically linked to a set of electrical contacts. It is uncommon, but not unknown, for limit switches to be electronic. Some are magnetically actuated, though most are electromechanical. This article will focus on limit switch designs and variants used in the control and actuation of industrial process valves.
Employed in a wide range of industrial applications and operating conditions, limit switches are known for their ease of installation, simple design, ruggedness, and reliability.
Valves, devices used for controlling flow, are motion based. The movable portions of valve trim create some degree of obstruction to media flow, providing regulation of the passage of the media through the valve. It is the movement of critical valve trim elements that limit switches are used to indicate or control. The movable valve trim elements commonly connect to a shaft or other linkage extending to the exterior of the valve body. Mounting electric, hydraulic, or pneumatic actuators to the shaft or linkage provides the operator a means to drive the mechanical connection, changing the orientation or position of the valve trim and regulating the media flow. Because of its positive connection to the valve trim, the position of the shaft or linkage is analogous to the trim position and can be used to indicate what is commonly referred to as “valve position”. Limit switches are easily applied to the valve shaft or linkage in a manner that can provide information or direct functional response to certain changes in valve position.
In industrial valve terms, a limit switch is a device containing one or more magnetic or electrical switches, operated by the rotational or linear movement of the valve.
What are basic informational elements that can be relayed to the control system by limit switches? Operators of an industrial process, for reasons of efficiency, safety, or coordination with other process steps, may need answers to the following basic questions about a process control valve:
  • Is the valve open? 
  • Is the valve closed? 
  • Is the valve opening position greater than “X”? 
  • Has the valve actuator properly positioned the valve at or beyond a certain position? 
  • Has the valve actuator driven the valve mechanism beyond its normal travel limits? 
  • Is the actuator functioning or failing? 
Partial or complete answers to these and other questions, in the form of electrical signals relayed by the limit switch, can serve as confirmation that a control system command has been executed. Such a confirmation signal can be used to trigger the start of the next action in a sequence of process steps or any of countless other useful monitoring and control operations.

Applying limit switches to industrial valve applications should include consideration of:
  • Information Points – Determine what indications are necessary or useful for the effective control and monitoring of valve operation. What, as an actual or virtual operator, do you want to know about the real time operational status of a valve that is remotely located. Schedule the information points in operational terms, not electrical switch terms. 
  • Contacts – Plan and layout a schedule of logical switches that will provide the information the operator needs. You may not need a separate switch for each information point. In some cases, it may be possible to derive needed information by using logical combinations of switches utilized for other discrete functions. 
  • Environment – Accommodate the local conditions and hazards where the switch is installed with a properly rated enclosure. 
  • Signal – The switch rating for current and voltage must meet or exceed those of the signal being transmitted. 
  • Duty Cycle – The cycling frequency must be considered when specifying the type of switch employed. Every switch design has a limited cycle life. Make sure your selection matches the intended operating frequency for the process. 
  • Auxiliary Outputs – These are additional contact sets that share the actuation of the primary switch. They are used to transmit additional signals with specifications differing from the primary signal. 
  • Other Actuator Accessories – Limit switches are often integrated into an accessory unit with other actuator accessories, most of which are related to valve position. A visual local indication of valve position is a common example. 
Switches and indicators of valve position can usually be provided as part of a complete valve actuation package, provided by the valve manufacturer or a third party. It is recommended that spare contacts be put in place for future use, as incorporating additional contacts as part of the original actuation package incurs comparatively little additional cost.

Employing a properly configured valve automation package, with limit switches delivering valve status or position information to your control system, can yield operational and safety benefits for the life of the unit. Good advice is to consult with a valve automation specialist for effective recommendations on configuring your valve automation accessories to maximize the level of information and control.

Tuesday, January 26, 2016

Valve Preparation For Oxygen or High Purity Service

Hazmat symbol for oxygen
Oxygen is used extensively throughout a wide range of industrial processes. Medical, deep-sea, metal cutting, welding, and metal hardening are a few examples. The steel industry uses oxygen to increase capacity and efficiency in furnaces. As a synthesis gas, oxygen is also used in the production of gasoline, methanol and ammonia.

Odorless and colorless, oxygen is concentrated in atmospheric air at approximately 21%. While O2, by itself, is non-flammable, it vigorously supports  combustion of other materials. Allowing oils or greases to contact high concentrations of oxygen can result in ignition and possibly explosion. Oxygen service preparation of an industrial valve calls for special cleaning processes or steps that remove all traces of oils and other contaminants from the valve to prepare for safe use with oxygen (O2). Aside from the reactive concerns surrounding oxygen, O2 preparation is also used for applications where high purity must be maintained and valves must be free of contaminants.

Gaseous oxygen is noncorrosive and may be used with a variety of metals. Stainless steel, bronze and brass are common. Liquid oxygen presents unique challenges due to cryogenic temperatures. In this case, valve bodies, stems, seals and packing must be carefully chosen.

Various types of valves are available for oxygen service, along with a wide array of connections, including screwed, socket weld, ANSI Class 150 and ANSI Class 300, DIN PN16 and DIN PN40 flanged ends. Body materials include 316 stainless steel, monel, bronze and brass. Ball and stem material is often 316 stainless steel or brass. PTFE or glass filled PTFE are inert in oxygen, serving as a common seat and seal material employed for O2 service.

Common procedures for O2 service are to carefully deburr metal parts, then meticulously clean to remove all traces of oil, grease and hydrocarbons before assembly. Valve assembly is performed in a clean area using special gloves to assure no grease or dust contaminates the valve. Lubricants compatible with oxygen must be used. Seating and leakage pressure tests are conducted in the clean area, using grease free nitrogen. Specially cleaned tools are used throughout the process. Once assembled, the valves are tested and left in the open position. A silicone desiccant pack is usually inserted in the open valve port, then the valve ports are capped. A warning label about the desiccant pack's location is included, with a second tag indicating the valve has been specially prepared for oxygen service. Finally, valves are individually sealed in polyethylene bags for shipment and storage. Different manufacturers may follow slightly differing protocols, but the basics are the same. The valve must be delivered scrupulously contaminant free.

The O2 preparation of valves is one of many special production variants available to accommodate your special application requirements. Share your valve requirements and challenges with a valve specialist to get the best solution recommendations.

Tuesday, January 19, 2016

Delta Cooling Towers - News Update

AHR Expo announcement for Delta Cooling Towers
Delta Cooling Towers
Exhibiting at AHR Expo 2016
Delta Cooling Towers manufactures corrosion resistant cooling towers for commercial and industrial applications where these product features are important:
  • Seamless double wall engineered plastic (HDPE) shell
  • Corrosion proof construction
  • Direct drive fan system
  • Totally enclosed VFD rated motors
  • Factory assembled for simple installation
  • 20 Year shell warranty
  • PVC water distribution system with non-clog large orifice removable nozzles
  • High efficiency PVC fill
  • Made in the USA
Mountain States Engineering and Controls (MSEC) represents the manufacturer in Colorado, Wyoming, and Montana You can visit the Delta Cooling Towers booth at AHR Expo January 25 - 27 in Orlando, Florida. 

Corrosion resistant cooling tower for HVAC or industrial cooling
HDPE Cooling Tower
Courtesy Delta Cooling Towers

Tuesday, January 12, 2016

Replacing Finned Tube Heat Exchangers...When There Is No Documentation

Refrigeration finned evaporator coil
Refrigeration evaporator coil, one of  many finned coil
and heat exchanger types
Heat is a common energy component of many industrial processes. Moving or transferring heat between two media is accomplished with a wide variety of heat exchangers, which are manufactured in forms to accommodate the specific performance requirements of each process, machine, or operation.

One type of heat exchanger is the finned tube, also called finned coil. It is commonly used when heating or cooling air, with the fins expanding the heat transfer surface of the tube for greater efficiency. Typical applications include:

  • Steam to air
  • Water to air
  • Refrigerant to air

Eventually, all heat exchangers need either major overhaul or replacement. The general practice with finned coils is to replace them. There are many circumstances that could lead to the unfortunate loss of the original design and construction information for the coil to be replaced. If faced with this dilemma, here are some of the information points you will need to have a replacement fabricated.
  • Mounting Form: How is the coil held in place within the equipment or process? Record locations and size of any mounting holes or other fixtures holding the assembly in place. If there is a frame or case for the coil, measurements and a sketch or drawing of the case will be helpful. 
  • Construction Materials: Make a schedule of all the parts of the existing assembly and the material from which each is fabricated.
  • Tubes: The outside diameter and wall thickness of the tube used in the assembly is important.
  • Media: What flows inside the tubes? What flows outside the tubes?
  • Inlet and Outlet Conditions: This is critical data that, if not already documented, will need to be determined in order to assure proper performance. The inlet and outlet (also referred to as "entering" and "leaving") conditions for both media define coil performance.
  • Connections: Size, type, and location of any media connections must be coordinated with existing conditions to make the new coil a true drop-in replacement.
  • Circuiting: Circuiting refers to the path, or paths, the media contained within the tubes will follow. This can be difficult to communicate in some cases, as the circuiting in some finned coils can be complex. Take the time to make a drawing of both ends of the existing coil, detailing the connections made by the U-shaped tubes or headers on each end. Additionally, if there are capillary or small branching tubes that extend from the main inlet connection to several circuits, detail those too. Take photos as part of your documentation.
  • Purpose and Application: Write out a description of what the heat exchanger is supposed to accomplish. Include as much detail as you know about the process media. This will be useful to the engineer attempting to process all the information you provide into a properly configured heat exchanger.
The replacing of a heat exchanger is also a good time to examine the performance delivered by the existing unit. Was it a limiting factor in the operation of the process? If so, perhaps this may be an opportunity to build in some headroom. Whatever the case, recognize that bringing in a product specialist with experience and knowledge will provide the beneficial leverage you need to get the job done right and finished on time.

Tuesday, January 5, 2016

Pressure Relief Valves - Safety Sentry

Gas fired industrial steam boilers
Industrial processes involve hazards. Thoughtful engineering
and design minimize risk and mitigate damage.
Danger and hazards are an integral part of industrial processes. The mitigation of these dangers and hazards, as well as reducing the probability of their occurrence, is the primary charge of industrial process engineering. Every product intended for use in a process control setting has safety and protection included in its design criteria. Pressure relief valves fall in that category of products designed and intended solely for safety purposes.

Manufacturers of what most generally refer to as pressure relief valves break the genre down into two distinct groups, relief valves and safety valves. One manufacturer, Kunkle (a Pentair brand), distinguishes the two valve types in their "Safety and Relief Products Technical Reference"...
Relief Valve: A spring-loaded pressure relief valve actuated by the static pressure upstream of the valve. The valve opens normally in proportion to the pressure increase over the opening pressure. A relief valve is used primarily with incompressible fluids (liquids).
Safety Valve: A spring-loaded pressure relief valve actuated by the static pressure upstream of the valve and characterized by rapid opening or pop action. A safety valve is normally used with compressible fluids.
The difference between the two valve types is found in their response to an excessive pressure condition. The relief valve, according to the definition, responds proportionally to the pressure increase, whereas the safety valve provides a non-proportional rapid response. Note also that the relief valve is generally intended for use with liquids (incompressible) and safety valves are commonly applied to compressible fluids, which would include steam and air.

Pressure relief valves are found anywhere pressure is contained, be it a piping system, vessel, even a
Pressure relief valve spring loaded
Spring loaded pressure
relief valve
Courtesy Kunkle
household pressure cooker. The purpose of the relief or safety valve is to protect a pressurized system or vessel, should the system pressure exceed the maximum allowable working pressure. Simply put, keep it from breaking apart.

Because of the potentially catastrophic nature of a pressurized system failure, there is a high level of scrutiny, regulation, and testing focused on pressure relief and safety valves. The proper sizing and selection of the valves is also critical to providing proper function.

I have included a technical reference bulletin from Kunkle with this article. Browse through it. You are bound to discover something you did not know about safety and relief valves and their proper application. You can also contact the specialists at Mountain States Engineering for assistance in proper valve sizing and selection.